首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Application of digital cross-correlation spectroscopy to the spectra of the W Serpentis binaries SX Cas and RX Cas has allowed an accurate determination of the orbits and rotations of the (mass-losing) K-subgiant secondary components. The distortion of the primary radial-velocity curves due to the influence of the prominent accretion disks in these systems has been modelled to first order. This enables us to estimate k 1, and thereby the mass ratio q 0.30, to within ± 20%. The absolute radii of the secondaries are derived independently from the observed rotations and periods, assuming synchronous rotation. They show that the stars fill their Roche lobes, or at least very nearly so. Rough fits to the available photometry shows both primaries to be unevolved mid-B stars; that in RX Cas appears completely obscured by the disk. Preliminary spectroscopic data for W Ser and W Cru show some promise for similar analyses of these systems.  相似文献   

2.
Initial results are presented from a study of H profiles in the two interacting binaries KX And and RX Cas of W Serpentis type. The used CCD spectra with a resolution of 0.13Å/px were obtained with the 2.2m telescope and the Coudé spectrograph at the German-Spanish Astronomical Center at Calar Alto/Spain.KX And. This star is probably a non-eclipsing member of the W Serpentis type interactive binaries and has a period of P = 38.908 days. Our seven spectra of KX And were obtained at phase 0.54 – 0.75. The P Cyg profiles of the H line during our observations indicate an expanding shell. The asymetry becomes blue-sided at phase 0.67 and increases thereafter. This points toward a strong outflow of matter in the vicinity of the L3 point.RX Cas. According to the model of Andersen et al. (1988) the primary is a mid-B type star with M = 5.8M and R = 2.5R . The star is completely obscured by a geometrically and optically thick disk, which is supplied by mass transfer from the other component. The secondary is a K1 giant with M = 1.8M and R = 23.5R and fills out his critical Roche lobe. Radiative and geometrical properties of the disk are variable and its structure is probably not homogenous.Five spectra of RX Cas were obtained during the primary eclipse (phase 0.95 – 0.19). The observed double-peak emission is seen only after the eclipse with a separation of 250 km/s peak-to-peak, while during the eclipse an asymetric line profile can be observed with a red-shifted emission always presented. Also, a central emission at = 0.94 should be noticed, probably originating in the vicinity of L1.The observations of both systems indicate that we are dealing with strongly interacting binaries. Further observations are planned for better covering of phase.Visiting Astronomer, German-Spanish Astronomical Center, Calar Alto, operated by the Max-Planck-Institut für Astronomie Heidelberg jointly with the Spanish National Commision for Astronomy.  相似文献   

3.
Initial results are presented from a study of H γ profiles in the two interacting binaries KX And and RX Cas of W Serpentis type. The used CCD spectra with a resolution of 0.13Å/px were obtained with the 2.2m telescope and the Coudé spectrograph at the German-Spanish Astronomical Center at Calar Alto/Spain. KX And. This star is probably a non-eclipsing member of the W Serpentis type interactive binaries and has a period of P = 38.908 days. Our seven spectra of KX And were obtained at phase 0.54 – 0.75. The P Cyg profiles of the H γ line during our observations indicate an expanding shell. The asymetry becomes blue-sided at phase 0.67 and increases thereafter. This points toward a strong outflow of matter in the vicinity of the L3 point. RX Cas. According to the model of Andersen et al. (1988) the primary is a mid-B type star with M = 5.8M and R = 2.5R . The star is completely obscured by a geometrically and optically thick disk, which is supplied by mass transfer from the other component. The secondary is a K1 giant with M = 1.8M and R = 23.5R and fills out his critical Roche lobe. Radiative and geometrical properties of the disk are variable and its structure is probably not homogenous. Five spectra of RX Cas were obtained during the primary eclipse (phase 0.95 – 0.19). The observed double-peak emission is seen only after the eclipse with a separation of ≈ 250 km/s peak-to-peak, while during the eclipse an asymetric line profile can be observed with a red-shifted emission always presented. Also, a central emission at φ = 0.94 should be noticed, probably originating in the vicinity of L1. The observations of both systems indicate that we are dealing with strongly interacting binaries. Further observations are planned for better covering of phase.  相似文献   

4.
A systematic search is reported for phenomena associated with circumstellar matter in interacting binary systems of the Algol and W Serpentis type. Ultraviolet emission lines have been detected by the author in 10 Algols and 6 Serpentids. No conspicuous difference exists between systems with disk accretion and those with direct stream impact. Evidence is indicated that the lines are formed predominantly by scattering in an induced stellar wind. Relative intensity of Fe II and Fe III emissions appears to be correlated with the spectral type of the gainer. It is suggested that in the Serpentids we see a thick disk nearly edge-on, but that the emission lines indicate the nature of the gainer inside.  相似文献   

5.
A systematic search is reported for phenomena associated with circumstellar matter in interacting binary systems of the Algol and W Serpentis type. Ultraviolet emission lines have been detected by the author in 10 Algols and 6 Serpentids. No conspicuous difference exists between systems with disk accretion and those with direct stream impact. Evidence is indicated that the lines are formed predominantly by scattering in an induced stellar wind. Relative intensity of Fe II and Fe III emissions appears to be correlated with the spectral type of the gainer. It is suggested that in the Serpentids we see a thick disk nearly edge-on, but that the emission lines indicate the nature of the gainer inside.  相似文献   

6.
We discuss the origin, evolution and fate of low-mass Algols (LMA) that have components with initial masses less than 2.5 M0. The semi-major axes of orbits of pre-LMA do not exceed 20–25 R0. The rate of formation of Algol-type stars is 0.01/year. Magnetic stellar winds may be the factor that determines the evolution of LMA. Most LMA end their lives as double helium degenerate dwarfs with M1/M2 0.88 (like L870-2). Some of them even merge through angular momentum loss caused by gravitational waves.  相似文献   

7.
We present a-table of results from our survey of Algols, conducted with the Lick Observatory ITS scanners and the IUE spectrometer.We have determined the continuous flux distributions for a number of the Algol systems. Optical scans were made with the ITS scanners of Lick Observatory, while for the ultraviolet flux distributions, we used the IUE satellite spectrometer in the low-dispersion mode. The following table summarizes the results: {ie340-01}  相似文献   

8.
The properties of the eclipsing binaries Algol, Beta Lyrae, and W Serpentis are discussed and new results are presented. The physical properties of the components of Algol are now well determined. High resolution spectroscopy of the H-alpha feature by Richards et al. and by Gillet et al. and spectroscopy of the ultraviolet resonance lines with the International Ultraviolet Explorer satellite reveal hot gas around the BBV primary. Gas flows also have been detected apparently originating from the low mass, cooler secondary component and flowing toward the hotter star through the Lagrangian L1 point. Analysis of 6 years of multi-bandpass photoelectric photometry of Beta Lyrae indicates that systematic changes in light curves occur with a characteristic period of -275 ± 25 days. These changes may arise from pulsations of the B8II star or from changes in the geometry of the disk component. Hitherto unpublished u, v, b, y, and H-alpha index light curves of W Ser are presented and discussed. W Ser is a very complex binary system that undergoes complicated, large changes in its light curves. The physical properties of W Ser are only poorly known, but it probably contains one component at its Roche surface, rapidly transfering matter to a component which is embedded in a thick, opaque disk. In several respects, W Ser resembles an upscale version of a cataclysmic variable binary system.  相似文献   

9.
The properties of the eclipsing binaries Algol, Beta Lyrae, and W Serpentis are discussed and new results are presented. The physical properties of the components of Algol are now well determined. High resolution spectroscopy of the H-alpha feature by Richards et al. and by Gillet et al. and spectroscopy of the ultraviolet resonance lines with the International Ultraviolet Explorer satellite reveal hot gas around the BBV primary. Gas flows also have been detected apparently originating from the low mass, cooler secondary component and flowing toward the hotter star through the Lagrangian L1 point. Analysis of 6 years of multi-bandpass photoelectric photometry of Beta Lyrae indicates that systematic changes in light curves occur with a characteristic period of -275 ± 25 days. These changes may arise from pulsations of the B8II star or from changes in the geometry of the disk component. Hitherto unpublished u, v, b, y, and H-alpha index light curves of W Ser are presented and discussed. W Ser is a very complex binary system that undergoes complicated, large changes in its light curves. The physical properties of W Ser are only poorly known, but it probably contains one component at its Roche surface, rapidly transfering matter to a component which is embedded in a thick, opaque disk. In several respects, W Ser resembles an upscale version of a cataclysmic variable binary system.  相似文献   

10.
11.
Time-resolved spectroscopy during the eclipse of short-period Algol systems, has shown their accretion disks to be small, turbulent structures with non-Keplerian velocity fields and asymmetries between the leading and trailing sides of the disk. These transient disks are produced by the impact of the gas stream on the mass-gaining star, and occur in systems where the star is just large enough to ensure the stream collision is complete. These emission line disks and the excess continuum emission do not always occur together. The permanent accretion disks in at least a few of the long-period Algol systems have features in common with the transient disks including non-Keplerian velocity fields.  相似文献   

12.

The circumstellar plasma that produces Hα emission in Algol binaries has been investigated using phase-resolved, high dispersion data acquired from CCD and image tube detectors. Results are summarized in this paper, including discussions of the disk geometry and size, asymmetry in the distribution of material, long-term or non-phase dependent variability, mass outflow, the mean electron density, and how the latter properties vary with the system's period or location in the r-q diagram. Five systems which display permanent emission with periods ranging from 4.5 to 261 days (SW Cyg, UX Mon, TT Hya, AD Her, and RZ Oph) are intercompared. If P < 4.5 days, no permanent disks are observed, while if P > 6 days, stable disks with only slight long-term variations in their Hα brightness are seen. The most variable systems appear to be those in the 5 – 6 day range, but the star's position in the r-q diagram has the largest influence on its behavior. The trailing side of the accretion disk, where the gas stream impacts the inner disk, is usually brighter, and the leading side is often times more extended. The disk extends out to at least 95% of the Roche surface of the primary and is highly flattened (≤RP). Mass outflow near phase 0.5 is commonplace.

  相似文献   

13.
14.
Time-resolved spectroscopy during the eclipse of short-period Algol systems, has shown their accretion disks to be small, turbulent structures with non-Keplerian velocity fields and asymmetries between the leading and trailing sides of the disk. These transient disks are produced by the impact of the gas stream on the mass-gaining star, and occur in systems where the star is just large enough to ensure the stream collision is complete. These emission line disks and the excess continuum emission do not always occur together. The permanent accretion disks in at least a few of the long-period Algol systems have features in common with the transient disks including non-Keplerian velocity fields.  相似文献   

15.
This work is concerned with binary systems that we call moderately close. These are systems in which the primary (by which we mean the initially more massive star) fills its Roche lobe when it is on the giant branch with a deep convective envelope but before helium ignition (late case B). We find that if the mass ratio q(= M 1/M 2) < q crit = 0.7 when the primary fills its Roche lobe positive feedback will lead to a rapid hydrodynamic phase of mass transfer which will probably lead to common envelope evolution and thence to either coalescence or possibly to a close binary in a planetary nebula. Although most Algols have probably filled their Roche lobes before evolving off the main-sequence we find that some could not have and are therefore moderately close. Since rapid overflow is unlikely to lead to an Algol-like system there must be some way of avoiding it. The most likely possibility is that the primary can lose sufficient mass to reduce q below q crit before overflow begins. Ordinary mass loss rates are insufficient but evidence that enhanced mass loss does take place is provided by RS CVn systems that have inverted mass ratios but have not yet begun mass transfer. We postulate that the cause of enhanced mass loss lies in the heating of the corona by by magnetic fields maintained by an dynamo which is enhanced by tidal effects associated with corotation. In order to model the the effects of enhanced mass loss we ignore the details and adopt an empirical approach calibrating a simple formula with the RS CVn system Z Her. Using further empirical relations (deduced from detailed stellar models) that describe the evolution of red giants we have investigated the effect on a large number of systems of various initial mass ratios and periods. These are notable in that some systems can now enter a much gentler Algol-like overflow phase and others are prevented from transferring mass altogether. We have also investigated the effects of enhanced angular momentum loss induced by corotation of the wind in the strong magnetic fields and consider this in relation to observed period changes. We find that a typical moderately close Algol-like system evolves through an RS CVn like system and then possibly a symbiotic state before becoming an Algol and then goes on through a red giant-white dwarf state which may become symbiotic before ending up as a double white dwarf system in either a close or wide orbit depending on how much mass is lost before the secondary fills its Roche lobe.  相似文献   

16.
This work is concerned with binary systems that we call ‘moderately close’. These are systems in which the primary (by which we mean the initially more massive star) fills its Roche lobe when it is on the giant branch with a deep convective envelope but before helium ignition (late case B). We find that if the mass ratio q(= M 1/M 2) < q crit = 0.7 when the primary fills its Roche lobe positive feedback will lead to a rapid hydrodynamic phase of mass transfer which will probably lead to common envelope evolution and thence to either coalescence or possibly to a close binary in a planetary nebula. Although most Algols have probably filled their Roche lobes before evolving off the main-sequence we find that some could not have and are therefore ‘moderately close’. Since rapid overflow is unlikely to lead to an Algol-like system there must be some way of avoiding it. The most likely possibility is that the primary can lose sufficient mass to reduce q below q crit before overflow begins. Ordinary mass loss rates are insufficient but evidence that enhanced mass loss does take place is provided by RS CVn systems that have inverted mass ratios but have not yet begun mass transfer. We postulate that the cause of enhanced mass loss lies in the heating of the corona by by magnetic fields maintained by an αω dynamo which is enhanced by tidal effects associated with corotation. In order to model the the effects of enhanced mass loss we ignore the details and adopt an empirical approach calibrating a simple formula with the RS CVn system Z Her. Using further empirical relations (deduced from detailed stellar models) that describe the evolution of red giants we have investigated the effect on a large number of systems of various initial mass ratios and periods. These are notable in that some systems can now enter a much gentler Algol-like overflow phase and others are prevented from transferring mass altogether. We have also investigated the effects of enhanced angular momentum loss induced by corotation of the wind in the strong magnetic fields and consider this in relation to observed period changes. We find that a typical ‘moderately close’ Algol-like system evolves through an RS CVn like system and then possibly a symbiotic state before becoming an Algol and then goes on through a red giant-white dwarf state which may become symbiotic before ending up as a double white dwarf system in either a close or wide orbit depending on how much mass is lost before the secondary fills its Roche lobe.  相似文献   

17.
Four different aspects related to the evolution of Algols are discussed: the occurrence of a contact phase during the mass transfer, the evolution of short period systems evolving through case A mass transfer, the influence of the mass transfer on the surface abundances of both components, and the problem of the initial parameters of Algol systems. For the latter, a search is made for conservative case B systems. UZ Cyg seems to be a good candidate for such evolution. Finally, some remarks are given on the initial values of the low mass Algol S Cancri.  相似文献   

18.
The evolution of massive stars   总被引:1,自引:0,他引:1  
The evolution of stars with masses between 15 M 0 and 100M 0 is considered. Stars in this mass range lose a considerable fraction of their matter during their evolution.The treatment of convection, semi-convection and the influence of mass loss by stellar winds at different evolutionary phases are analysed as well as the adopted opacities.Evolutionary sequences computed by various groups are examined and compared with observations, and the advanced evolution of a 15M 0 and a 25M 0 star from zero-age main sequence (ZAMS) through iron collapse is discussed.The effect of centrifugal forces on stellar wind mass loss and the influence of rotation on evolutionary models is examined. As a consequence of the outflow of matter deeper layers show up and when the mass loss rates are large enough layers with changed composition, due to interior nuclear reactions, appear on the surface.The evolution of massive close binaries as well during the phase of mass loss by stellar wind as during the mass exchange and mass loss phase due to Roche lobe overflow is treated in detail, and the value of the parameters governing mass and angular momentum losses are discussed.The problem of the Wolf-Rayet stars, their origin and the possibilities of their production either as single stars or as massive binaries is examined.Finally, the origin of X-ray binaries is discussed and the scenario for the formation of these objects (starting from massive ZAMS close binaries, through Wolf-Rayet binaries leading to OB-stars with a compact companion after a supernova explosion) is reviewed and completed, including stellar wind mass loss.  相似文献   

19.
We discuss mass loss relations for OB-type stars as a function of luminosity, effective temperature, and mass. We conclude that a simple first order linear regression relation is as good as any other more sophisticated relation, with the advantage that the simple form consumes much less computer time when used in evolutionary codes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号