首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The airborne synthetic-aperture radar (SAR) system developed for the Canada Centre for Remote Sensing (CCRS) is described. It consists of two radars, at C-band and X-band. Each radar incorporates the following features: dual-channel receivers and dual-polarized antennas; a high quality, 7-look, real-time processor; a sensitivity time control for range-dependent gain control; a motion-compensation system for antenna steering in azimuth and elevation; and baseband I and Q signal phase rotation. The system also uses a high-power transmitter with a low-power back-up. The SAR maps to either side of the aircraft, at high or low resolution, at incidence angles which in high resolution span 0° to 80°. Radar operating parameters, data products, key specifications and the motion compensation scheme used are presented. Properties of the real-time imagery are discussed and examples of C-band SAR data in the three operating modes are given  相似文献   

2.
Adaptive fade margin is required to counter the severe but varying rain attenuation in Ka satellite communications. In searching for a suitable rain countermeasure, the effectiveness of the adaptive forward error control (AFEC) scheme is studied. Two AFEC schemes using convolutional codes and concatenated codes are proposed and their performance analyzed. The schemes can provide a progressively adaptive fade margin of 10.1 and 10.4 dB, respectively, in excess of the systems fixed fade margin. To improve the efficient use of shared resources of the system, an AFEC scheme using double coding is introduced, and its performance is analyzed. In this scheme a single codec is used repeatedly, and as a result the hardware cost is reduced and the utilization increased. The effective usable capacity of a conceptual AFEC resource sharing scheme using Golay double coding is also analyzed  相似文献   

3.
A set of algorithms is presented for finding the best set of K mutually exclusive paths through a trellis of N nodes, with worst-case computation time bounded by N3log n for a fixed-precision computation. The algorithms are based on a transformation of the K-path trellis problem into an equivalent minimum-cost network flow (MCNF) problem. The approach allows the application of efficient MCNF algorithms, which can obtain optimal solutions orders of magnitude faster than the algorithm proposed by J.K. Wolf et al. (1989). The resulting algorithms extend the practicality of the trellis formulation (in terms of required computations) to multiobject tracking problems with much larger numbers of targets and false alarms. A response by Wolf et al. is included  相似文献   

4.
Performance prediction for a detection system employing noncoherent integration is carried out for a chi-square family of fluctuating targets in K-distributed clutter plus noise. The detection performance for Swerling 11 targets in the K-distributed clutter plus noise is compared with that in exponentially correlated Rayleigh clutter. The results show that the performance prediction based on N pulses integrated in clutter plus noise using the K-distributed clutter model may be approximately equivalent to that using the exponentially correlated Rayleigh-distributed clutter model  相似文献   

5.
Nonbinary m-sequences (maximal length sequences) for spread-spectrum communication systems that have a two-level autocorrelation are presented. The autocorrelation function of an m -sequence over the Galois field of q elements GF(q), where q=pk, for p a prime and k an integer greater than 1, is developed and shown to be bilevel when the elements of GF(q) are expressed as elements of a vector space over the pth roots of unity  相似文献   

6.
The authors present a series solution using Hermite polynomials to the long-standing problem of computing the probability P that positive definite noncentral quadratic form d(x) of a Gaussian random vector xR satisfies d( x)⩽r2 for any given rR. This problem has wide applications in radar, tracking, air traffic control, etc. The fast-converging series solution presented is very accurate and can be performed rapidly using the recursion relations for Hermite polynomials  相似文献   

7.
The analysis of the transient and steady-state processes in LC choppers is presented. The method, used previously for the analysis of processes in grid-connected and self-commutated converters, is adjusted for analysis of LC chopper's processes. The difference equations describing these processes, are obtained and solved. The analytical solution of the problem and the conditions of the transient, steady-state, and stability existence in the chopper are found. Theoretical and experimental results are compared and satisfactory agreement is obtained  相似文献   

8.
A solution is presented to the problem of finding the best set of K completely unmerged paths through a trellis with M i⩾K states at depth i in the trellis, i=0, 1, 2, . . ., N. Here, `best set' means that the sum of the metrics of all K paths in the set is minimized, and `completely unmerged' means that no two paths pass through a common state. The solution involves using the Viterbi algorithm on an expanded trellis. This result is then used to separate the tracks of K targets optimally in a simplified model of a multitarget radar system. The model includes measurement errors and false alarms, but it does not include the effects of missing detections or merged measurements  相似文献   

9.
It is shown that by using a proper transformation of state variables, the third-order system of the parallel resonant converter (PRC) with LLC-type commutation can be analyzed by means of a two-dimensional state-plane diagram. A set of characteristic curves which can be used for the converter design is derived from the analysis. It is shown from these curves that the converter possesses more desirable features than the conventional PRC  相似文献   

10.
Euler's theorem states that any sequence of finite rotations of a rigid body can be described as a single rotation of the body about a fixed axis in three-dimensional Euclidean space. The usual statement of the theorem in the literature cannot be extended to Euclidean spaces of other dimensions. Equivalent formulations of the theorem are given and proved in a way which does not limit them to the three-dimensional Euclidean space. Thus, the equivalent theorems hold in other dimensions. The proof of one formulation presents an algorithm which shows how to compute an angular-difference matrix that represents a single rotation which is equivalent to the sequence of rotations that have generated the final n-D orientation. This algorithm results also in a constant angular velocity which, when applied to the initial orientation, eventually yields the final orientation regardless of what angular velocity generated the latter. The extension of the theorem is demonstrated in a four-dimensional numerical example. The issue of the correct n-D representation of angular velocity is discussed  相似文献   

11.
Nth-order dynamics target observability from anglemeasurements   总被引:1,自引:0,他引:1  
Necessary and sufficient conditions are presented for the observability of the target's Nth-order dynamics, given direction measurements. The derivations are extremely simple and do not require the examination of an observability matrix or nonlinear differential equations. Previously published observability requirements for the first-order dynamics are shown to be necessary but not sufficient  相似文献   

12.
The applicability of superconductors to antennas is examined with emphasis on the roles of external and internal fields. Six potential implementations have resulted. These are superdirective arrays, millimeter-wavelength arrays, electrically small antennas, matching of antennas, phasers for electronic scanning, and traveling-wave array feeds. Most superdirective arrays are still impractical, because of high Q and strict tolerances. Large millimeter arrays appear feasible, due to a major reduction in feed losses. For electrically small antennas, high Q again limits applicability. However, matching of small superdirective arrays and all electrically small antennas, including large transmit antennas, is very attractive, as matching network losses are greatly reduced. Switched-line phasers offer a major size reduction; phase control by means of temperature of a single line poses some problems. Traveling-wave array beam steering by means of temperature also appears possible. The last two utilize the kinetic inductance provided by thin films  相似文献   

13.
Calculation of optimum gain for minimum distortion due to A/D (analog-to-digital) conversion requires the estimation of the input signal strength. To use a common AGC (automatic gain control) for both the I/Q (in-phase and quadrature) signals, it is efficient to estimate the input signal strength using the quantized A/D output from both channels. Assuming a Gaussian input, the relationship between σ of the input of the A/D converter and E(|x|+|y|) and E(max(|x|,|y|)+1/2 min (|x|,|y|)) for t quantized I/Q output x and y is derived. Numerical results obtained using the derived expression and the statistical data obtained through simulation show excellent agreement. It is concluded that, because of its simplicity, the cubic equation obtained by fitting the numerical results should be useful  相似文献   

14.
Spread-spectrum and single-channel-per-carrier (SCPC) transmission techniques work well in very small aperture terminal (VSAT) networks for multiple-access purposes while allowing the Earth station antennas to remain small. Direct-sequence code-division multiple-access (DS-CDMA) is the simplest spread-spectrum technique to use in a VSAT network since a frequency synthesizer is not required for each terminal. An examination is made of the DS-CDMA and SCPC Ku-band VSAT satellite systems for low-density (64-kb/s or less) communications. A method for improving the standard link analysis of DS-CDMA satellite-switched networks by including certain losses is developed. The performance of 50-channel full mesh and star network architectures is analyzed. The selection of operating conditions producing optimum performance is demonstrated  相似文献   

15.
A method for identifying a transfer function, H(z)=A(z)/B(z), from its frequency response values is presented. Identifying the transfer function involves determining the unknown degrees and coefficients of the polynomials A(z) and B( z), given the frequency response samples. The method for finding the parameters of the transfer function involves solving linear simultaneous equations only. An important aspect of the method is the decoupled manner in which the polynomials A(z) and B(z) are determined. The author presents two slightly different derivations of the linear equations involved, one based on the properties of divided differences and the other using Vandermonde matrices or, equivalently, Lagrange interpolation. A matrix synthesized from the given frequency response samples is shown to have a rank equal to the number of poles in the system  相似文献   

16.
On the uniform sampling of a sinusoidal signal   总被引:1,自引:0,他引:1  
It is generally accepted that a monochromatic signal such as sin 2πWt (W>0) must be sampled at a uniform rate greater than the ostensible Nyquist rate of 2W samples per to effect a reconstruction of the signal. It is shown that a sinusoid of frequency W Hz is completely determined by its samples taken at the uniform rate of 2r samples per second, where r>0 is arbitrary subject only to the restriction that W kr for any positive integer k. In particular, a pure sinusoid may be sampled uniformly without loss of information at arbitrarily small rates  相似文献   

17.
The author analyzes the effects of phase errors on synthetic aperture radar (SAR). The theory is applied to the following question: how does the achievable resolution vary with the carrier frequency when optimum quadratic focus and/or optimum processing interval (synthetic aperture length) are used? Numerous related results are given, so that much of the material is tutorial. For phase errors corresponding to uncompensated motion, the best achievable RMS resolution with any phase error spectrum satisfies the derived equation. For motion-induced phase errors it is seen that resolution improves with increasing carrier frequency when the first term in the expression applies (e.g. for phase errors concentrated at low frequencies) and resolution is independent of carrier frequency when R δ/v/v is the smaller term (e.g. with broad band or high frequency phase errors)  相似文献   

18.
Allocation of L-band spectrum for land mobile satellite (MSAT) services in Mobile-WARC-87 paves the way for the introduction of such services in the early 1990s. An overview of the proposed network architecture of the Canadian MSAT network is presented. Management of transponder resources, i.e. power, bandwidth, and spot-beam antennas, which poses a set of unique and significant problems in the design and operation of MSAT networks, is addressed. The three-level hierarchical approach used by the Canadian network is described, and the technical requirements for solving the above problems are identified. The two upper levels employ reconfigurable fixed assignment for allocating transponders to antenna spot beams, and transponder power and bandwidth to different services. The lowest level employs demand assignment and packet multiple access protocols for resource sharing among different subscribers. Uncoupling the resource management problems into manageable portions reduces the complexity and enhances the robustness of the network  相似文献   

19.
Continuous wave (CW) signals phase modulated by a periodic waveform, and their corresponding receivers, are discussed. The combined response in delay and Doppler is almost identical to the (ideal) response of the coherent pulse train. The receivers are matched to an integral number N of modulation periods of the transmitted signal. CW implies a duty cycle of 100%. However, the signal duration need not be longer than N+2 periods. The CW signals have the advantage that their peak power is equal to the average power. Their disadvantages are more complicated receiver processing and the need for two antennas  相似文献   

20.
The performance of the sampled matrix inversion (SMI) adaptive algorithm in colored noise is investigated using the Gram-Schmidt (GS) canceler as an analysis tool. Lower and upper bounds of average convergence are derived, indicating that average convergence slows as the input time samples become correlated. When the input samples are uncorrelated, the fastest SMI algorithm convergence occurs. When the input samples are correlated then the convergence bounds depend on the number of channels N, the number of samples per channels K , and the eigenvalues associated with K×K correlation matrix of the samples in a given channel. This matrix is assumed identical for all channels  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号