首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We analyze two solar type III radio bursts that were observed simultaneously by the ICE and Ulysses spacecraft. Both bursts originated behind the solar limb as viewed from either spacecraft. At the time of these events, ICE was in the ecliptic plane at 1 AU and Ulysses was 35° south of the ecliptic plane at 4 AU. For one event on 931117, the ratios of the peak flux densities measured at each spacecraft, at each observing frequency, were consistent with the most probable source locations relative to ICE and Ulysses. The second event on 931004 was a complex burst consisting of two distinct components at high frequencies. At low frequencies, the intensity of the first component decreased rapidly at each spacecraft. The second component, however, dominated the low frequency emission observed at Ulysses but not at ICE. These differences in the observed radiation must be related to the different viewing geometries of the two spacecraft. The measured onset times as a function of observing frequency were consistent with a constant exciter speed through the interplanetary medium and suggest that there are significant propagation delays, especially for the radiation propagating within the ecliptic plane.  相似文献   

2.
Wohlmuth  R.  Plettemeier  D.  Edenhofer  P.  Bird  M.K.  Efimov  A.I.  Andreev  V.E.  Samoznaev  L.N.  Chashei  I.V. 《Space Science Reviews》2001,97(1-4):9-12
Temporal power spectra have been computed from recordings of the downlink frequency fluctuations of the Galileo and Ulysses radio signals during their solar conjunctions. Both the equatorial streamer belt and the polar coronal holes were investigated over a range of ray path solar offset distances from 4 to 80 R. By combining gapless data from successive tracking passes, Doppler scintillation power spectra could be computed down to extremely low frequencies. Some spectra feature a low-frequency turnover at frequencies around 0.1 mHz that could be interpreted as an outer scale of density turbulence in the coronal plasma. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
本文叙述激光全息干涉术在航空梁架结构振动分析中的应用。采用激光全息照相得到了两种简化模型的五阶振型图。同时应用振动理论计算了两种模型的固有频率值以及各阶振型的节线分布,两者进行比较,结果十分接近,这表明了实验结果和理论计算结果是可靠的。对一个航空梁架结构的两种简化模型(三梁和五梁)的振动分析表明,其五阶振型存在着较大的差别,这表明了模型简化中存在着刚度的差别。简单的三梁简化模型在多梁机翼的模拟上具有误差,而五梁简化模型得到可靠论证。  相似文献   

4.
The Thermal Ion Dynamics Experiment (TIDE) and the Plasma Source Instrument (PSI) have been developed in response to the requirements of the ISTP Program for three-dimensional (3D) plasma composition measurements capable of tracking the circulation of low-energy (0–500 eV) plasma through the polar magnetosphere. This plasma is composed of penetrating magnetosheath and escaping ionospheric components. It is in part lost to the downstream solar wind and in part recirculated within the magnetosphere, participating in the formation of the diamagnetic hot plasma sheet and ring current plasma populations. Significant obstacles which have previously made this task impossible include the low density and energy of the outflowing ionospheric plasma plume and the positive spacecraft floating potentials which exclude the lowest-energy plasma from detection on ordinary spacecraft. Based on a unique combination of focusing electrostatic ion optics and time of flight detection and mass analysis, TIDE provides the sensitivity (seven apertures of 1 cm2 effective area each) and angular resolution (6°×18°) required for this purpose. PSI produces a low energy plasma locally at the POLAR spacecraft that provides the ion current required to balance the photoelectron current, along with a low temperature electron population, regulating the spacecraft potential slightly positive relative to the space plasma. TIDE/PSI will: (a) measure the density and flow fields of the solar and terrestrial plasmas within the high polar cap and magnetospheric lobes; (b) quantify the extent to which ionospheric and solar ions are recirculated within the distant magnetotail neutral sheet or lost to the distant tail and solar wind; (c) investigate the mass-dependent degree energization of these plasmas by measuring their thermodynamic properties; (d) investigate the relative roles of ionosphere and solar wind as sources of plasma to the plasma sheet and ring current.Deceased.  相似文献   

5.
The observations of type-III solar radio bursts are briefly reviewed to set requirements on a model for their interpretation. The most important of these requirements is that the source must be an electron stream which is in a state of continuous quasilinear relaxation and which initially must have a nearly monotonically decreasing velocity distribution. The problem of constructing a model is broken into three parts: (1) The plasma wave source which depends on the interaction of the electron stream with electron plasma waves. (2) The radiation source which depends on the interaction of plasma waves and transverse electromagnetic waves or in a magnetized plasma the ordinary and extraordinary modes of magnetoionic theory. (3) The propagation of radiation between the source and the observer which depends on the transmission of radiation through a scattering refracting absorbing magnetized plasma.Progress on a model for the plasma wave source is reviewed and it is concluded that no existing models are adequate. The equations which would lead to an adequate model are written down, but not solved. These include, in addition to collisional damping, Landau damping both by the exciting stream and the background plasma, and spontaneous and induced processes for a three-dimensional distribution of plasma waves. Possible limitations to a quasilinear approach such as pile-up of plasma waves and nonlinear effects are considered. Processes which affect the gross structure of the source such as electron trajectories in coronal streamers and electron scattering by inhomogeneities are reviewed.Progress on the radiation source is considered both in the absence and presence of a magnetic field. At high frequencies (e.g., 80 MHz) observations of radiation near the fundamental and second harmonic of the plasma frequency allow a unique determination of source size and the energy density in plasma waves within the uncertainties of geometry by source ray tracing. This determination is extremely critical because the fundamental must be amplified and thus production of the fundamental is effectively a much more highly nonlinear process than production of the second harmonic. At low frequencies (e.g., 500 kHz) the second harmonic is shown to be dominant because amplification of the fundamental becomes an inefficient process.Calculations of scattering of radiation in a random medium are reviewed. It is concluded that these are adequate at high and low frequencies, but have not been carried out properly at intermediate frequencies where amplification of the fundamental may still be present. It is shown in particular that when scattering is taken into account at high frequencies all observations can be explained by isotropic emission near the second harmonic. At low frequencies the nature of the scatterers is determined by source occultations unlike the case at high frequencies where these are free parameters. This fact allows the possibility of determining true source sizes at low frequencies by subtracting out the contribution due to scattering. A mechanism for producing the possibly observed linear or highly elliptical polarization of type-III bursts, which must be imposed far from the source due to Faraday rotation, is reviewed.Finally, the questions of what remains to be done and what we can hope to obtain upon completion of this work are briefly considered.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

6.
王涛  容易  胡久辉  唐冶  丁千 《推进技术》2021,42(7):1466-1475
液体火箭在发射过程中,恶劣的动力学环境常常会引起发动机推力下降或提前关机等工作故障,引入动力冗余技术可以保证发动机故障后仍有足够动力保证火箭正常飞行,从而大幅度地提高系统的可靠性。针对动力冗余技术而提出的液体捆绑火箭推进剂交叉输送问题,以三种工作模式:芯级火箭与助推器独立工作(Mode 1);一台助推发动机故障,该助推器将多余推进剂供给芯级发动机(Mode 2);为使助推器提前分离,所有发动机均由助推器供给推进剂(Mode 3)为研究对象,利用有限元技术分别建立三种工作模式下液体火箭动力系统的动力学模型。利用数值方法进行的频率特性分析表明,动力系统每组相似频率在Mode 1模式下的分布较为集中,而在其他两种模式下的分布则较为分散。此外,比较三种工作模式下蓄压器能量值的变频效果发现,Mode 1模式的变频效果最好,而Mode 3的效果最差。  相似文献   

7.
Conclusion We have got a reasonably clear idea of the various forms under which the type IV continuum emission may appear. Also we can imagine what kind of processes come into play during a type IV event. But the insight gained so far applies to the general case. Individual cases are widely different, and we are still far from understanding why a given event behaves as it does. For instance, why are metric responses lacking at a certain big microwave outburst, or why is the decimetric component particularly strong or prolonged on certain occasions? One can imagine that such questions would receive an answer if one were allowed to see the configuration of magnetic lines of force above the activity region !Does the type IV event tell us a fine story of the interplay of energetic particles and streams of particles with coronal magnetic fields ? Maybe the story would be a fine one if the language could be understood. At present we know only a few words of it; for this reason to us the story is very fragmentary. First of all, however, the message should be recorded far more completely than has been done so far. The number of observations that should be made of one and the same event is tremendous; the program comprises:1) spectral observations from 1000 Mc/s down to the lowest frequencies; 2) single frequency observations at a great many wavelengths covering the whole radio spectrum; 3) measurements of polarization and 4) determinations of position and angular extent in at least every octave of the whole radio spectrum.Especially as regards the latter two points, the present situation is still very unsatisfactory, though good work has been done already in Japan. The realization of a complete recording of phenomena during a type IV event calls for a combined effort of several observatories.Very encouraging are the established relations between solar type IV events and terrestrial phenomena. From an analysis of solar cosmic ray events as recorded on several places on the earth, interesting inferences have been drawn regarding the travelling conditions of particles in interplanetary space (cf. Carmichael, 1962). Likewise, one may expect interesting information on the behaviour of interplanetary particle clouds of solar origin from (interferometric) observations of decametric radio emission on the occasion of type IV events.The occurrence of a major type IV event enables forecasters to predict successfully geomagnetic and ionospheric storms. Type IV events will determine at what times certain space research experiments will be launched in the next solar cycle. One should like to be able to indicate the probability for the occurrence of type IV solar radio flares themselves. It is known that these flares generally occur in complex sunspot groups; but a complex sunspot group does not of necessity imply the occurrence of a type IV flare. Observations of coronal condensations at microwave frequencies with a high resolution interferometer may help sorting out those centres of activity that are most likely to produce type IV flares.  相似文献   

8.
Type II, III, and continuum solar radio events, as well as intense terrestrial magnetospheric radio emissions, were observed at low frequencies (10 MHz to 30 kHz) by the IMP-6 satellite during the period of high solar activity in August 1972. This review covers briefly the unique direction finding capability of the experiment, as well as a detailed chronology of the low frequency radio events, and, where possible, their association with both groundbased radio observations and solar flares. The attempted observation of solar bursts in the presence of intense magnetospheric noise may, as illustrated, lead to erroneous results in the absence of directional information. The problem of assigning an electron density scale and its influence on determining burst trajectories is reviewed. However, for the disturbed conditions existing during the period in question, we feel that such trajectories cannot be determined accurately by this method. In conclusion, the capabilities, limitations, and observing programs of present and future satellite experiments are briefly discussed.  相似文献   

9.
气动弹性剪裁中的响应值敏度   总被引:2,自引:0,他引:2  
进行了一种用解析方法求气动弹性剪裁中的结构响应值敏度的研究。推导了结构的气动弹性响应(位移,振动形态和频率,静气动弹性效率和发散,颤振 )对设计变量导数的封闭解析表达式。设计变量可包含复合材料结构的铺层方向角。广义气动力导数计及正交振动形态导数的影响。经实例验算,所求得的敏度,与差分法相比,数值上吻合得很好。此方法已成功地应用于 CAE倡导发展的结构优化设计程序系统。  相似文献   

10.
We discuss our current understanding of the interior structure and thermal evolution of giant planets. This includes the gas giants, such as Jupiter and Saturn, that are primarily composed of hydrogen and helium, as well as the “ice giants,” such as Uranus and Neptune, which are primarily composed of elements heavier than H/He. The effect of different hydrogen equations of state (including new first-principles computations) on Jupiter’s core mass and heavy element distribution is detailed. This variety of the hydrogen equations of state translate into an uncertainty in Jupiter’s core mass of 18M . For Uranus and Neptune we find deep envelope metallicities up to 0.95, perhaps indicating the existence of an eroded core, as also supported by their low luminosity. We discuss the results of simple cooling models of our solar system’s planets, and show that more complex thermal evolution models may be necessary to understand their cooling history. We review how measurements of the masses and radii of the nearly 50 transiting extrasolar giant planets are changing our understanding of giant planets. In particular a fraction of these planets appear to be larger than can be accommodated by standard models of planetary contraction. We review the proposed explanations for the radii of these planets. We also discuss very young giant planets, which are being directly imaged with ground- and space-based telescopes.  相似文献   

11.
We present a review of the main physical features of comet nuclei, their birthplaces and the dynamical processes that allow some of them to reach the Sun’s neighborhood and become potentially detectable. Comets are thought to be the most primitive bodies of the solar system although some processing—for instance, melting water ice in their interiors and collisional fragmentation and reaccumulation—could have occurred after formation to alter their primordial nature. Their estimated low densities (a few tenths g?cm?3) point to a very fluffy, porous structure, while their composition rich in water ice and other highly volatile ices point to a formation in the region of the Jovian planets, or the trans-neptunian region. The main reservoir of long-period comets is the Oort cloud, whose visible radius is ~3.3×104 AU. Yet, the existence of a dense inner core cannot be ruled out, a possibility that would have been greatly favored if the solar system formed in a dense galactic environment. The trans-neptunian object Sedna might be the first discovered member that belongs to such a core. The trans-neptunian population is the main source of Jupiter family comets, and may be responsible for a large renovation of the Oort cloud population.  相似文献   

12.
Utilization of high frequencies for over-the-horizon surveillance necessitated a refined approach to the determination of actual ray paths. Various ray-tracing programs have been developed. The basic problem lies in accurately determining values of the appropriate ionospheric parameters. A possible means is by utilization of oblique sounding devices located at the path terminals to provide 1) relative propagation time difference (?t) between the modes, 2) maximum frequency propagated by any given mode (MUF), and 3) difference in MUF between the various modes (?MUF). The technique has not been fully verified; preliminary results are encouraging.  相似文献   

13.
Ulysses Mission investigations, extending from pole-to-pole of the Sun and inner heliosphere in the period 1993-1996, have led to discoveries that will change dramatically models to account for the physical phenomena underlying the 26-day modulation of galactic cosmic rays and anomalous nuclear components and their propagation modes. These new findings also relate to the propagation of low energy nucleons and electrons accelerated by corotating interaction region shocks. Also included are some unpublished measurements that will need to be taken into account in any model for the 26-day modulation phenomena. This report is a brief summary of the principal results from the solar wind, magnetic field and charged particle investigations, and their alternate interpretations.  相似文献   

14.
在研究排除某型机减速器振动过大故障中发现齿轮的一种新型振动模态即摇型节径振动模态。本文研究了其振动特性并由此阐明了减速器振动过大的机理。提出了两种特殊的调频方法,可将在工作转速上、下边界内的两摇型节径模态共振移出边界以外。论证了阻尼衬筒和阻尼圈减振的有效性。经采用齿轮减振措施后,减速器振动降到很低水平。   相似文献   

15.
Both heliophysics and planetary physics seek to understand the complex nature of the solar wind’s interaction with solar system obstacles like Earth’s magnetosphere, the ionospheres of Venus and Mars, and comets. Studies with this objective are frequently conducted with the help of single or multipoint in situ electromagnetic field and particle observations, guided by the predictions of both local and global numerical simulations, and placed in context by observations from far and extreme ultraviolet (FUV, EUV), hard X-ray, and energetic neutral atom imagers (ENA). Each proposed interaction mechanism (e.g., steady or transient magnetic reconnection, local or global magnetic reconnection, ion pick-up, or the Kelvin-Helmholtz instability) generates diagnostic plasma density structures. The significance of each mechanism to the overall interaction (as measured in terms of atmospheric/ionospheric loss at comets, Venus, and Mars or global magnetospheric/ionospheric convection at Earth) remains to be determined but can be evaluated on the basis of how often the density signatures that it generates are observed as a function of solar wind conditions. This paper reviews efforts to image the diagnostic plasma density structures in the soft (low energy, 0.1–2.0 keV) X-rays produced when high charge state solar wind ions exchange electrons with the exospheric neutrals surrounding solar system obstacles.The introduction notes that theory, local, and global simulations predict the characteristics of plasma boundaries such the bow shock and magnetopause (including location, density gradient, and motion) and regions such as the magnetosheath (including density and width) as a function of location, solar wind conditions, and the particular mechanism operating. In situ measurements confirm the existence of time- and spatial-dependent plasma density structures like the bow shock, magnetosheath, and magnetopause/ionopause at Venus, Mars, comets, and the Earth. However, in situ measurements rarely suffice to determine the global extent of these density structures or their global variation as a function of solar wind conditions, except in the form of empirical studies based on observations from many different times and solar wind conditions. Remote sensing observations provide global information about auroral ovals (FUV and hard X-ray), the terrestrial plasmasphere (EUV), and the terrestrial ring current (ENA). ENA instruments with low energy thresholds (\(\sim1~\mbox{keV}\)) have recently been used to obtain important information concerning the magnetosheaths of Venus, Mars, and the Earth. Recent technological developments make these magnetosheaths valuable potential targets for high-cadence wide-field-of-view soft X-ray imagers.Section 2 describes proposed dayside interaction mechanisms, including reconnection, the Kelvin-Helmholtz instability, and other processes in greater detail with an emphasis on the plasma density structures that they generate. It focuses upon the questions that remain as yet unanswered, such as the significance of each proposed interaction mode, which can be determined from its occurrence pattern as a function of location and solar wind conditions. Section 3 outlines the physics underlying the charge exchange generation of soft X-rays. Section 4 lists the background sources (helium focusing cone, planetary, and cosmic) of soft X-rays from which the charge exchange emissions generated by solar wind exchange must be distinguished. With the help of simulations employing state-of-the-art magnetohydrodynamic models for the solar wind-magnetosphere interaction, models for Earth’s exosphere, and knowledge concerning these background emissions, Sect. 5 demonstrates that boundaries and regions such as the bow shock, magnetosheath, magnetopause, and cusps can readily be identified in images of charge exchange emissions. Section 6 reviews observations by (generally narrow) field of view (FOV) astrophysical telescopes that confirm the presence of these emissions at the intensities predicted by the simulations. Section 7 describes the design of a notional wide FOV “lobster-eye” telescope capable of imaging the global interactions and shows how it might be used to extract information concerning the global interaction of the solar wind with solar system obstacles. The conclusion outlines prospects for missions employing such wide FOV imagers.  相似文献   

16.
More than 20 years ago, in 1972, anomalous flux increases of helium and heavy ions were discovered during solar quiet times. These flux increases in the energy range<50 MeV/nucleon showed peculiar elemental abundances and energy spectra, e.g. a C/O ratio0.1 around 10 MeV/nucleon, different from the abundances of solar energetic particles and galactic cosmic rays. Since then, this anomalous cosmic ray component (ACR) has been studied extensively and at least six elements have been found (He,N,O,Ne,Ar,C) whose energy spectra show anomalous increases above the quiet time solar and galactic energetic particle spectrum. There have been a number of models proposed to explain the ACR component. The presently most plausible theory for the origin of ACR ions identifies neutral interstellar gas as the source material. After penetration into the inner heliosphere, the neutral particles are ionized by solar UV radiation and by charge exchange reactions with the solar wind protons. After ionization, the now singly charged ions are picked up by the interplanetary magnetic field and are then convected with the solar wind to the outer solar system. There, the ions are accelerated to high energies, possibly at the solar wind termination shock, and then propagate back into the inner heliosphere. A unique prediction of this model is that ACR ions should be singly ionized. Meanwhile, several predictions of this model have been verified, e.g. low energy pick-up ions have been detected and the single charge of ACR ions in the energy range at MeV/nucleon has been observed. However, some important aspects such as, for example, the importance of drift effects for the acceleration and propagation process and the location of the acceleration site are still under debate. In this paper the present status of experimental and theoretical results on the ACR component are reviewed and constraints on the acceleration process derived from the newly available ACR ionic charge measurements will be presented. Possible new constraints provided by correlative measurements at high and low latitudes during the upcoming solar pole passes of the ULYSSES spacecraft in 1994 and 1995 will be discussed.  相似文献   

17.
This review paper outlines background information and covers recent advances made via the analysis of spectra and images of prominence plasma and the increased sophistication of non-LTE (i.e. when there is a departure from Local Thermodynamic Equilibrium) radiative transfer models. We first describe the spectral inversion techniques that have been used to infer the plasma parameters important for the general properties of the prominence plasma in both its cool core and the hotter prominence-corona transition region. We also review studies devoted to the observation of bulk motions of the prominence plasma and to the determination of prominence mass. However, a simple inversion of spectroscopic data usually fails when the lines become optically thick at certain wavelengths. Therefore, complex non-LTE models become necessary. We thus present the basics of non-LTE radiative transfer theory and the associated multi-level radiative transfer problems. The main results of one- and two-dimensional models of the prominences and their fine-structures are presented. We then discuss the energy balance in various prominence models. Finally, we outline the outstanding observational and theoretical questions, and the directions for future progress in our understanding of solar prominences.  相似文献   

18.
Conclusions During the past three years there have been significant extensions of the solar data available. Over most of the solar spectrum between 1 – 2200 the new or improved observations have led to interesting problems in line identifications. The identifications have in turn led to new methods of determining the physical conditions in the solar atmosphere, eg electron density determinations from the Hei like ion intercombination line to forbidden line ratio (Gabriel and Jordan, 1969b). The majority of the strong lines have now been identified, either by theoretical considerations or from the extensive laboratory data which have recently become available. However, weak lines may also aid the understanding of the chromosphere and corona and work on the identifications of all remaining features observed must continue.  相似文献   

19.
Ground-based observations of the variable solar radio emission ranging from few millimetres to decametres have been used here as a diagnostic tool to gain coherent phenomenological understanding of the great 2, 4 and 7 August, 1972 solar events in terms of dominant physical processes like generation and propagation of shock waves in the solar atmosphere, particle acceleration and trapping.The basic data used in this review have been collected by many workers throughout the world utilizing a variety of instruments such as fixed frequency radiometers, multi-element interferometers, dynamic spectrum analysers and polarimeters. Four major flares are selected for detailed analysis on the basis of their ability to produce energetic protons, shock waves, polar cap absorptions (PCA) and sudden commencement (SC) geomagnetic storms. A comparative study of their radio characteristics is made. Evidence is seen for the pulsations during microwave bursts by the mechanism similar to that proposed by McLean et al. (1971), to explain the pulsations in the metre wavelength continuum radiation. It is suggested that the multiple peaks observed in some microwave bursts may be attributable to individual flares occurring sequentially due to a single initiating flare. Attempts have been made to establish identification of Type II bursts with the interplanetary shock waves and SC geomagnetic storms. Furthermore, it is suggested that it is the mass behind the shock front which is the deciding factor for the detection of shock waves in the interplanetary space. It appears to us that more work is necessary in order to identify which of the three moving Type IV bursts (Wild and Smerd, 1972), namely, advancing shock front, expanding magnetic arch and ejected plasma blob serves as the piston-driver behind the interplanetary shocks. The existing criteria for proton flare prediction have been summarized and two new criteria have been proposed. Observational limitations of the current ground-based experimental techniques have been pointed out and a suggestion has been made to evolve appropriate observational facilities for solar work before the next Solar Maximum Year (SMY).  相似文献   

20.
闫云聚  顾家柳 《航空动力学报》1993,8(3):234-240,307
本文对于失调叶片盘的耦合振动问题 ,采用子结构模态综合法建立系统的振动微分方程 ,利用试验模态分析及模态修正计算求得调谐叶片和外缘带锥壳轮盘的若干低阶模态。通过对叶片模态刚度的微量摄动 ,构造真实的失调叶片盘和各种理论分析失调模型。对某个实际的失调叶片盘的非旋转强迫振动试验验证了系统的力学模型和计算公式。计算结果分析表明 ,失调叶片盘强迫振动响应中个别叶片振动过甚乃为叶片失调所致。对各种失调模型的振动计算表明 ,小频差的随机失调优于其他失调分布形式。并就算例给出了最佳频差幅值和恰当的发动机工作频率范围。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号