首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 937 毫秒
1.
采用块结构网格与二阶精度流场分区求解技术,对高速旋转、含侧向支柱冲压增程弹丸进气道内外复杂流场进行了数值模拟,得到了高速旋转工况下对应于不同来流马赫数和攻角,以及临界工况时超音速进气道内外流场复杂的波系结构。在旋转工况下,进气道流场结构与不旋转时相似,但旋转速度以及攻角的存在对冲压发动机进气道的总体性能产生了负面影响,进气道总压恢复系数和动能系数均有所降低,而流场畸变指数则显著增大;冲压发动机进气道在较低马赫数工作时的综合性能优于在较高马赫数工作时的综合性能。  相似文献   

2.
王青  谷良贤  龚春林 《固体火箭技术》2012,35(6):732-735,741
针对超燃冲压发动机宽马赫数、攻角范围内高性能工作要求,建立了基于多目标优化的变结构进气道设计方法,获得了进气道结构随马赫数和攻角变化的调节规律。以总压恢复系数、压升比和阻力系数为优化目标,以二维混压式进气道为对象,采用遗传算法进行了基准进气道优化设计,得到Pareto非劣解;以一组Pareto非劣解为基准,在不同马赫数和攻角下进行了进气道变结构优化设计,拟合得到进气道结构随马赫数和攻角变化曲线。仿真结果证实了理论分析的正确性,并发现进气道变结构实现了发动机大范围内高性能工作;进气道高度可变,使得发动机在亚燃和超燃模态均能正常起动和稳定工作;以高马赫数作为设计马赫数,变结构设计后,发动机性能提高。  相似文献   

3.
应用TTM网格研究冲压增程弹丸进气道内外流场   总被引:2,自引:1,他引:1  
陈雄  周长省  郑亚 《固体火箭技术》2004,27(4):243-246,254
基于TTM贴体网格生成法,研究了某冲压增程弹丸超音速进气道内外流场数值模拟中单区域网格生成问题,流场求解采用了二阶隐式TVD格式。NACA0012翼型跨音速流场算例结果表明,所采用的算法和编制的程序可靠,能够适用于具有亚、跨、超音速三种流态共存的复杂流场数值计算。对超音速进气道数值模拟结果显示,得到的流场复杂波系结构是合理的,来流马赫数和攻角变化显著影响着进气道性能。  相似文献   

4.
徐颖军  高峰  王鹏 《火箭推进》2007,33(4):23-27,46
基于简单反应的漩涡分裂模型,建立了固体火箭冲压发动机补燃室内的湍流燃烧模型,并在该模型下对某实验发动机进行了三维数值模拟,获得了补燃室内的流场结构。分析了补燃室燃烧效率的变化和发动机的性能,并研究了补燃室设计参数包括进气道出口设计参数对燃烧效率的影响。通过计算与分析,为固体火箭冲压发动机补燃室设计提供了一些建议。  相似文献   

5.
X型布局导弹冲压发动机攻角特性数值研究   总被引:11,自引:0,他引:11  
冲压发动机是导弹设计者关心的重要问题之一。在实际飞行中为了有效的跟踪和攻击目标,必然要面对带攻角的情况。为了更好的模拟弹体、进气道和掺混段一体化影响,本文采用二阶迎风隐式TVD格式,内外流分区耦合求解可压缩N S方程,数值模拟了掺混段出口压力与来流压力比为P P∞=4 2超临界状态下,二元方形截面"X"型布局一体化通气模型复杂流场。计算了不同攻角对冲压发动机性能和流场所产生的影响,并对结果进行了比较和分析。  相似文献   

6.
固体火箭冲压发动机补燃室掺混与燃烧流场数值模拟   总被引:7,自引:0,他引:7  
用雷诺平均N-S方程和k-ε双方程湍流模型,对壅塞式固体火箭冲压发动机补燃室内的掺混与燃烧流场进行了数值模拟。考虑了进气道尺寸、进气夹角、头部距离、一次喷嘴扩张比和喷嘴数目等结构因素对补燃室掺混与燃烧性能的影响。模拟结果表明,进气道尺寸和进气夹角对掺混与补燃性能的影响与非壅塞式相同;增加一次喷嘴的数目和加大喷嘴的扩张比增加了燃气的分散性,提高了补燃效率。该研究从理论上找到了提高补燃效率的途径。  相似文献   

7.
固体冲压式火箭发动机是冲压发动机的一种变种。本研究使用一个带侧向空气道的排放燃烧室。考虑反应流,在燃气发生器中装填了50%高氯酸铵和50%聚酯的富燃推进剂。将κ—ε联立方程描述的湍流模型和一个简单、一步、快速反应的化学动力学总合成椭圆型偏微分方程来描述流场。为了适合所研究的问题,由改进的TEACH计算机程序来求解。基于此分析,更加深入地了解到混合和燃烧对固体冲压式火箭发动机全部性能的影响。将侧向空气进气道的位置移向燃料进气道,减少侧向空气进气道的角度,以及增加空气对燃料的比例,都能改善混合和燃烧特性,提高固体冲压式火箭发动机的比冲,这与Vanka的分析结果和Schadow的试验数据定性地一致。  相似文献   

8.
冲压发动机超声速进气道研究进展   总被引:2,自引:0,他引:2  
超声速进气道是冲压发动机的关键部件之一。简要介绍了冲压发动机常用的典型进气道。重点叙述了进气道的最新研究成果,主要包括等溢流角弯曲前缘侧壁压缩进气道设计概念、支板引射压缩进气道、双模态超燃冲压发动机变几何进气道、全外压缩式超声速“参数进气道”、固定型面方转椭圆形超声速进气道(REST)等的设计概念与方案。最后概括了先进进气道的发展趋势。  相似文献   

9.
针对固体火箭冲压发动机的特点,研制了固体火箭冲压发动机CAD软件,该软件系统包括了燃气发生器设计、助推补燃室设计、进气道设计、发动机性能计算和飞行弹道的计算。使用该系统可进行固体火箭冲压发动机总体方案论证,预估发动机的主要结构尺寸和发动机的整体性能。本文以一假想的空-空弹用固冲发动机方案设计为例,介绍固冲发动机设计步骤和软件系统的特点。  相似文献   

10.
固液火箭冲压发动机通过固液两种燃料匹配工作,相比传统的固体火箭冲压发动机和液体燃料冲压发动机具有较为明显的优势.基于离散相模型和单步反应模型,采用Fluent 对设计点飞行参数下,不同结构和不同工况条件下的燃烧室两相反应流场进行了数值仿真.结果表明,燃气发生器喷管参数和进气道进气角度主要影响空气与燃气流的撞击以及头部区...  相似文献   

11.
固冲发动机设计点性能迭代计算(英文)   总被引:2,自引:0,他引:2  
固冲发动机热力学性能参数计算是发动机性能计算的重要部分,通常是针对特定的推进剂建立热力学数据表格,然后通过插值取得相应参数。通过对NASA CEA程序进行二次开发,使其成为便于应用的子程序,并以补燃室热力计算为基础,通过给定推进剂配方、进气道总压恢复系数、补燃室燃烧效率、比冲效率等设计参数,建立了满足总体推力要求的固冲发动机设计点性能迭代计算方法,为固冲发动机方案设计提供了一种实用工具。  相似文献   

12.
采用Reynolds应力方程模型及涡耗散燃烧模型,在不同旋转工况下给定相同进气流量,对侧向进气固冲发动机补燃室湍流反应流场进行了数值计算,得到了燃烧产物的平衡组分、燃烧温度和其他热力学参数,并在此基础上计算了补燃室燃烧效率、发动机推力等参数。数值模拟表明,对于侧向进气固体火箭冲压发动机,在空气射流中引入旋转流动,能有效提高补燃室内的燃烧效率,进一步提高发动机性能。燃烧效率随旋流强度呈先增大、后又减小的规律。采用最佳旋流数的旋转进气后,可使发动机推力提高约2.3%。  相似文献   

13.
在高速旋转条件下,利用二维轴对称N-S方程对唇缘钝化的超声速弹用进气道内外的复杂流场进行了数值模拟,所得流场结构清晰.湍流模型为RNG k-ε两方程模型,数值格式为一阶迎风格式.获得了在设计马赫数下不同外罩唇缘钝化半径对进气性能参数的影响.研究表明,在唇缘钝化半径合理增大的情况下,进气道的稳定工作范围变宽,总压恢复系数提高,唯一不利因素为进气道总阻力有所增大,证实唇缘钝化后的进气道能满足固冲增程炮弹的使用要求.  相似文献   

14.
来流马赫数对引射火箭引射量的影响研究   总被引:1,自引:1,他引:1  
研究引射火箭引射量随来流马赫数的变化关系,对引射量由火箭引射主导向冲压主导之间转换点的选取以及一次火箭的质量管理具有重要意义.采用数值分析和实验研究,探索了引射火箭引射量随来流马赫教的变化关系.结果表明,针对所采用的引射火箭发动机构型,引射量随来流马赫数变化的拐点约为Ma=1.3~1.5,当来流马赫数Ma<1.3时,引射量由火箭引射主导,随来流马赫数的增加,引射量变化较缓慢;当来流马赫数Ma>1.5时,引射量由冲压主导,随来流马赫教的增加,引射量迅速增加.  相似文献   

15.
中心进气旋转射流冲压燃烧室湍流流动数值模拟   总被引:2,自引:1,他引:2  
采用Reynolds应力方程模型及涡耗散燃烧模型,对头部进气式固体火箭冲压发动机二次燃烧二维轴对称反应流场进行了数值模拟,研究了空气射流和燃气射流无旋、同向旋转和反向旋转3种进气方式对二次燃烧的影响。研究结果表明,当空气射流和燃气射流以有旋状态进入补燃室时,燃料与空气的混合速度变快,化学反应更快,燃烧也更为充分。  相似文献   

16.
固冲发动机补燃室二次燃烧实验研究   总被引:2,自引:0,他引:2  
采用不确定度评定的地面直连冲压实验设备,对某全尺寸固冲发动机补燃室二次燃烧进行了实验研究。通过测定比冲效率,确定了不同的燃气发生器喷嘴结构、空气进气角度、进气头部距离和补燃室长度对二次燃烧的影响,并进行了机理分析。结果表明,五喷嘴比冲效率较高,燃气的切入方式对补燃室二次燃烧有重要影响;增大入射角度,可提高比冲效率,但加剧了燃烧产物在补燃室内的沉积;补燃室头部距离不宜过大,比冲效率不随头部距离线性增加;补燃室长度增加,可使比冲效率提高,但效果并不理想。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号