共查询到20条相似文献,搜索用时 15 毫秒
1.
The fastest pulsar and the slowest nova; the oldest galaxies and the youngest stars; the weirdest life forms and the commonest
dwarfs; the highest energy particles and the lowest energy photons. These were some of the extremes of Astrophysics 2006.
We attempt also to bring you updates on things of which there is currently only one (habitable planets, the Sun, and the Universe)
and others of which there are always many, like meteors and molecules, black holes and binaries. 相似文献
2.
Gerhard Schäfer 《Space Science Reviews》2009,148(1-4):37-52
Based on general relativity, the article reviews gravitomagnetism in physics and astrophysics. Emphasis is put on observational effects. Accelerated reference frames in flat spacetime are discussed to illuminate the gravitomagnetic field. Compact insight into the dynamics of gravitationally interacting non-spinning and spinning objects is achieved by employing the Hamilton formalism. 相似文献
3.
José Luis Ballester Igor Alexeev Manuel Collados Turlough Downes Robert F. Pfaff Holly Gilbert Maxim Khodachenko Elena Khomenko Ildar F. Shaikhislamov Roberto Soler Enrique Vázquez-Semadeni Teimuraz Zaqarashvili 《Space Science Reviews》2018,214(2):58
Partially ionized plasmas are found across the Universe in many different astrophysical environments. They constitute an essential ingredient of the solar atmosphere, molecular clouds, planetary ionospheres and protoplanetary disks, among other environments, and display a richness of physical effects which are not present in fully ionized plasmas. This review provides an overview of the physics of partially ionized plasmas, including recent advances in different astrophysical areas in which partial ionization plays a fundamental role. We outline outstanding observational and theoretical questions and discuss possible directions for future progress. 相似文献
4.
采用格心格式的有限体积法求解三维大涡模拟控制方程,成功地将最新改进的SLAU格式推广到大涡数值模拟方法中。SLAU格式的空间重构方式采用五阶WENO格式,时间推进采用LU-SGS隐式时间推进。湍流模式为最新提出的基于随机分析的动态亚格子模型。计算了圆柱绕流、NACA4412翼型绕流、NACA0012翼型绕流三个算例,分别从可压缩较大迎角翼型绕流、可压缩跨音速翼型绕流以及不可压缩低马赫数圆柱绕流三个方面验证了将SLAU格式应用到湍流大涡数值模拟计算中的可行性。结果表明,结合SLAU格式的大涡模拟方法可以达到较好的数值模拟效果,同时间接检验了基于随机分析的动态亚格子模型的数值模拟效果。 相似文献
5.
Paul S. Wesson 《Space Science Reviews》2001,98(3-4):329-342
There is given a list and discussion of what are arguably the top 20 unsolved problems in astrophysics today. The list ranges from particle physics to cosmology. Possible resolutions are noted, but without judgement. Perhaps the most remarkable aspect of the discussed problems is that they are closely interrelated. This opens the prospect that a solution to one or a few may lead to a significantly better understanding of modern astrophysics. 相似文献
6.
Observations of cosmic rays and their related radio to gamma-ray signatures are surveyed and discussed critically, and compared to theoretical models of the cosmic-ray origin and propagation. The analogous heliospheric processes are included as a well-studied case of the principal physical processes of energetic particle acceleration and propagation. Reinforcements, or conflicts, in the interpretations of cosmic-ray spectral and compositional characteristics arise when cosmic-ray source and propagation models are confronted with astronomical information about the Galaxy as a whole and from potential source sites, i.e., supernova remnants or regions with high massive-star density. This volume represents the outcome of two workshops held at ISSI. In this chapter we summarize the introductory papers presented below, and include insights from the workshop discussions. 相似文献
7.
8.
采用了两种不同的亚网格尺度燃烧模型对带 V型稳定器的模型燃烧室紊流化学反应流动进行了大涡模拟 ,用 k-ε方程亚网格尺度模型确定亚网格紊流粘性 ,为了考虑热辐射对燃烧室壁温和气流温度的影响 ,运用热流法辐射模型估算热辐射通量 ,用 SIMPLE算法和混合差分求解大涡模拟各守恒方程 ,通过对两种不同亚网格尺度燃烧模型数值模拟结果与实验值的比较表明 ,两种燃烧模型都与实验值较吻合 ,但 G方程小火焰模型要比亚网格 EBU燃烧模型符合得更好些 相似文献
9.
基于有限体积法思想运用SIMPLER方法PLS格式求解轴对称柱坐标系下的GAO-YONG方程组,对管流边界层以及圆管湍流的自然转捩过程进行数值模拟。结果表明,方程不仅对于边界层流动的内层壁面律和外层亏损律能作出良好的预测,而且能够预报层流-湍流转捩过程中摩阻系数和速度型的变化。 相似文献
10.
Markus J. Aschwanden Norma B. Crosby Michaila Dimitropoulou Manolis K. Georgoulis Stefan Hergarten James McAteer Alexander V. Milovanov Shin Mineshige Laura Morales Naoto Nishizuka Gunnar Pruessner Raul Sanchez A. Surja Sharma Antoine Strugarek Vadim Uritsky 《Space Science Reviews》2016,198(1-4):47-166
11.
Markus J. Aschwanden Felix Scholkmann William Béthune Werner Schmutz Valentina Abramenko Mark C. M. Cheung Daniel Müller Arnold Benz Guennadi Chernov Alexei G. Kritsuk Jeffrey D. Scargle Andrew Melatos Robert V. Wagoner Virginia Trimble William H. Green 《Space Science Reviews》2018,214(2):55
Self-organization is a property of dissipative nonlinear processes that are governed by a global driving force and a local positive feedback mechanism, which creates regular geometric and/or temporal patterns, and decreases the entropy locally, in contrast to random processes. Here we investigate for the first time a comprehensive number of (17) self-organization processes that operate in planetary physics, solar physics, stellar physics, galactic physics, and cosmology. Self-organizing systems create spontaneous “order out of randomness”, during the evolution from an initially disordered system to an ordered quasi-stationary system, mostly by quasi-periodic limit-cycle dynamics, but also by harmonic (mechanical or gyromagnetic) resonances. The global driving force can be due to gravity, electromagnetic forces, mechanical forces (e.g., rotation or differential rotation), thermal pressure, or acceleration of nonthermal particles, while the positive feedback mechanism is often an instability, such as the magneto-rotational (Balbus-Hawley) instability, the convective (Rayleigh-Bénard) instability, turbulence, vortex attraction, magnetic reconnection, plasma condensation, or a loss-cone instability. Physical models of astrophysical self-organization processes require hydrodynamic, magneto-hydrodynamic (MHD), plasma, or N-body simulations. Analytical formulations of self-organizing systems generally involve coupled differential equations with limit-cycle solutions of the Lotka-Volterra or Hopf-bifurcation type. 相似文献
12.
It is believed that shock waves and other discontinuous flows form the basis of a wide range of phenomena in space medium. We review the results concerning the particular property of MHD discontinuities, the interrelation between their stability and structure. Such an interrelation is associated primarily with the requirement of their evolutionarity. For a non-evolutionary discontinuity the amplitudes of reflected and refracted waves caused by a small amplitude incident wave are not determined unambiguously from the conservation laws at the discontinuity surface. Since the problem of the further time evolution of the initial small perturbation does not have a unique solution, such a discontinuity cannot exist in a real medium as a single steady-state configuration. Therefore it is unstable with respect to a disintegration into several discontinuities or to a transition to some more general unsteady flow. This is confirmed by the fact that, in the studied cases, the non-evolutionary shock transitions can, while the evolutionary ones cannot, be represented as a set of several discontinuities and waves of rarefaction. One more fundamental property of the non-evolutionary shocks that argues for their non-existence is that they do not have a unique structure for all values of the dissipative transport coefficients. At the same time, the possibility of their existence cannot be excluded when the shock has a unique structure or when the disintegration is forbidden for some reasons. Besides the non-evolutionarity, which is a direct reason for a disintegration, there is an indirect one. It can be shown that the hydrodynamic shocks without magnetic field that are corrugationally unstable also allow the shock transitions through more than one discontinuity. This suggests that the shocks unstable in the ordinary sense, for which the small perturbation grows with time, do not exist at all, but they disintegrate into stable ones. However, the physical mechanism that distinguishes between these two scenarios remains unclear. The interrelation between the stability and structure of MHD discontinuities thus governs their nonlinear evolution. This fact is essential when describing shock waves and other discontinuous flows in the space medium. 相似文献
13.
与以往的湍流模型不同,GAO-YONG不可压湍流控制方程组不需要任何经验系数及壁面函数。其级数形式的能量方程与非线性现象多尺度层次相对应,具备了描述湍流统计平均和拟序结构的双重功能。本文采用交错网格和SIMPLE方法求解GAO-YONG不可压湍流方程组,考察了GAO-YONG方程组中能量方程阶数以及计算网格对拟序结构的影响,证明了该方程在描述拟序结构方面具有一定的适定性。 相似文献
14.
There has been a remarkable discovery concerning particles that are accelerated in the solar wind. At low energies, in the region where the particles are being accelerated, the spectrum of the accelerated particles is always the same: when expressed as a distribution function, the spectrum is a power law in particle speed with a spectral index of ?5, and a rollover at higher particle speeds that can often be described as exponential. This common spectral shape cannot be accounted for by any conventional acceleration mechanism, such as diffusive shock acceleration or traditional stochastic acceleration. It has thus been necessary to invent a new acceleration mechanism to account for these observations, a pump mechanism in which particles are pumped up in energy through a series of adiabatic compressions and expansions. The conditions under which the pump acceleration is the dominant acceleration mechanism are quite general and are likely to occur in other astrophysical plasmas. In this paper, the most compelling observations of the ?5 spectra are reviewed; the governing equation of the pump acceleration mechanism is derived in detail; the pump acceleration mechanism is applied to acceleration at shocks; and, as an illustration of the potential applicability of the pump acceleration mechanism to other astrophysical plasmas, the pump mechanism is applied to the acceleration of galactic cosmic rays in the interstellar medium. 相似文献
15.
16.
17.
K. Petrovay 《Space Science Reviews》2001,95(1-2):9-24
The precise nature of photospheric flows, and of the transport effects they give rise to, has been the subject of intense debate in the last decade. Here we attempt to give a brief review of the subject emphasizing interdisciplinary (solar physics–turbulence theory) aspects, key open questions, and recent developments. 相似文献
18.
Charged particle acceleration takes place ubiquitously in the Universe including the near-Earth heliospheric environment. Typical in situ spacecraft measurements made in the solar wind show that the charged particle velocity distribution contains energetic components with quasi scale-free power-law velocity dependence, f~v ?α , for high velocity range. In this Review a theory of quiet-time solar-wind electrons that contain a suprathermal component is discussed, in which these electrons are taken to be in dynamical equilibrium with Langmuir turbulence. This Review includes an overview of the Langmuir turbulence theory, as well as a discussion on asymptotic equilibrium solution of Langmuir turbulence/suprathermal electron system. Theoretical predictions of high-energy electron velocity power-law distribution index is then compared against the recent observations of the superhalo electron velocity distribution made by instruments onboard WIND and STEREO spacecraft. It is shown that the theoretical prediction of velocity power-law index is intermediate to the observed range. 相似文献
19.
We present an overview of the properties of magnetohydrodynamic turbulence within corotating interaction regions (CIRs) and its effects on energetic particles. We stress the importance of both the population of fluctuations in the inner heliosphere and the changing local environment in determining their properties at larger heliospheric distances. We present observations from two typical CIRs, one at 0.3 AU before compression regions have formed and the other well developed at 5.1 AU, and discuss the properties of fluctuations within them and show that it is possible to distinguish different regions of the CIR on the basis of the turbulence itself. The strength of the turbulence varies strongly within and close to the CIRs, explaining changes in the mean free path of energetic particles of several orders of magnitude with implications for the modulation of cosmic rays and for diffusive acceleration of particles. The mechanisms by which turbulent fluctuations within interaction regions scatter energetic particles are briefly discussed on a theoretical basis. This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
20.
In this paper we examine the physical foundations and theoretical development of the kappa distribution, which arises naturally from non-extensive Statistical Mechanics. The kappa distribution provides a straightforward replacement for the Maxwell distribution when dealing with systems in stationary states out of thermal equilibrium, commonly found in space and astrophysical plasmas. Prior studies have used a variety of inconsistent, and sometimes incorrect, formulations, which have led to significant confusion about these distributions. Therefore, in this study, we start from the N-particle phase space distribution and develop seven formulations for kappa distributions that range from the most general to several specialized versions that can be directly used with common types of space data. Collectively, these formulations and their guidelines provide a “toolbox” of useful and statistically well-grounded equations for future space physics analyses that seek to apply kappa distributions in data analysis, simulations, modeling, theory, and other work. 相似文献