首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the attitude stabilization problem of a rigid spacecraft described by Rodrigues parameters is investigated via a composite control strategy, which combines a feedback control law designed by a finite time control technique with a feedforward compensator based on a linear disturbance observer (DOB) method. By choosing a suitable coordinate transformation, the spacecraft dynamics can be divided into three second-order subsystems. Each subsystem includes a certain part and an uncertain part. By using the finite time control technique, a continuous finite time controller is designed for the certain part. The uncertain part is considered to be a lumped disturbance, which is estimated by a DOB, and a corresponding feedforward design is then implemented to compensate the disturbance. Simulation results are employed to confirm the effectiveness of the proposed approach.  相似文献   

2.
    
Compared with traditional hydraulic actuators, an Electro-Mechanical Actuator(EMA)is small in size and light in weight, so it has become more widely used. Aerodynamic load on aircraft control surface varies dramatically, and a change of flight environment leads to uncertainties of motor parameters. Therefore, high-dynamic response and strong anti-disturbance capability of an EMA are of great significance for aircraft rudder control and flight attitude adjustment. In order to improve dynamic response and disturbance rejection of an EMA and simplify control parameters tuning, a robust high-dynamic servo system based on Linear Active Disturbance Rejection Control(LADRC) is proposed for an EMA employing a Permanent Magnet Synchronous Motor(PMSM).Firstly, total disturbances of the EMA are analyzed, including parameter uncertainties, load variation, and static friction. A disturbance observer based on a reduced-order Extended State Observer(ESO) is designed to improve the anti-interference ability and dynamic performance. Secondly, the servo control architecture is simplified to a double-loop system, and a composite control of position and speed with acceleration feed-forward is presented to improve the EMA frequency bandwidth.Thirdly, the ideal model of the EMA is transformed into a simple cascade integral form with a disturbance observer, which makes it convenient to analyze and design the controller. Robustness performance comparisons are realized in frequency domain. Finally, simulation and experimental results have verified the effectiveness of the proposed strategy for EMAs.  相似文献   

3.
    
This paper addresses the attitude control problem of a space tethered robot platform in the presence of unknown external disturbance caused by a connecting elastic tether. The tether-generated unknown disturbance leads to tremendous challenges for attitude control of the platform. In this work, the perturbed attitude dynamics of the platform are derived with a consideration of the libration of the elastic tether, and then with the purpose of compensating the unknown disturbance, major attention is dedicated to develop a nonlinear disturbance observer based on gyros measurements, after which, an adaptive attitude scheme is proposed by combining the disturbance observer with a sliding mode controller. Finally, benefits from the observer based on an adaptive controller are validated by series of numerical simulations.  相似文献   

4.
In this paper, the attitude control algorithm of flexible spacecraft with unknown measurement delay and input delay based on disturbance observer is designed. The influence of measurement delay and input delay on the attitude control system and disturbance observer is analyzed. The disturbance estimation error equation is transformed into a differential system with a pure delay. Then, the observer gain is chosen based on the 3/2 stability theorem to ensure the stability and disturbance attenuation performance of the pure delay system. Next, the controller gain is designed based on the Linear Matrix Inequality(LMI) approach to guarantee the stability of the composite system and achieve H_∞ performance with two additive delays. The simulation results show that the proposed method can improve the anti-disturbance ability of the attitude control system.  相似文献   

5.
《中国航空学报》2024,37(8):404-420
As the elevator and rudder can be used actively for control,in addition to the rotors,Coaxial High-speed Helicopters(CHHs)have the problems of control redundancy and changing control authority in the transition mode.This paper presents a robust-augmentation transitioning flight control design for a CHH under the adverse conditions of parametric uncertainties and exter-nal disturbances.First,based on control characteristic analysis,an Adaptive Filtered Nonlinear Dynamic Inversion(AFNDI)controller is proposed for the angular rate to handle the effect of unknown unstructured uncertainties and external turbulence.Theoretical analysis proves that the presented angular rate controller can guarantee steady-state and transient performance.Further-more,the attitude angle and velocity controllers are also added.Then,an Incremental-based Non-linear Prioritizing Control Allocation(INPCA)method is designed to take into account control surface transition and changing control authority,which efficiently distributes the required moments between coaxial rotors and aero-surfaces,and avoids the control reversal problem of the yaw channel.In the proposed control architecture,the low-pass filter is introduced to alleviate the adverse influence of time delay and measurement noise.Finally,the effectiveness of the pro-posed controller is demonstrated through nonlinear numerical simulations,and is compared with existing methods.Simulation results show that the proposed control law can improve both capabil-ities of disturbance rejection and fast response,and works satisfactorily for the CHH transitioning control characteristic.  相似文献   

6.
This study presents an improved data-driven Model-Free Adaptive Control(MFAC)strategy for attitude stabilization of a partially constrained combined spacecraft with external disturbances and input saturation. First, a novel dynamic linearization data model for the partially constrained combined spacecraft with external disturbances is established. The generalized disturbances composed of external disturbances and dynamic linearization errors are then reconstructed by a Discrete Extended State Observer(DESO). With the dynamic linearization data model and reconstructed information, a DESO-MFAC strategy for the combined spacecraft is proposed based only on input and output data. Next, the input saturation is overcome by introducing an antiwindup compensator. Finally, numerical simulations are carried out to demonstrate the effectiveness and feasibility of the proposed controller when the dynamic properties of the partially constrained combined spacecraft are completely unknown.  相似文献   

7.
与地基空间目标监视系统相比,天基观测系统具有监视范围广,不受国界限制,观测精度高等优点,是未来空间目标观测技术的重要发展方向。但天基观测航天器工作时,相机转台的运动,太阳能帆板挠性部件的弹性振动与航天器的姿态运动相互影响,构成强耦合的非线性系统,传统的控制方案无法实现对这类天基观测航天器的高精度姿态控制。文章针对某一空间观测航天器的任务要求,设计了基于干扰观测器的前馈补偿航天器姿态控制系统,仿真实验结果表明:姿态角控制精度小于 0.06°,姿态角速度精度小于 0.03(°)/s,达到了精度要求。  相似文献   

8.
In this paper, we consider the attitude stabilization problem for a rigid spacecraft with external disturbances. To obtain a better disturbance rejection property, we employ finite-time control techniques. In the absence of disturbances, by employing continuous finite-time control method, a continuous finite-time controller is designed such that the attitude of the rigid spacecraft will converge to the origin in finite time. In the presence of disturbances, by employing terminal sliding mode method, a discontinuous finite-time control law is proposed such that the states will eventually converge to a small region of the origin, which can be rendered as small as desired. Numerical simulation results show the effectiveness of the method.  相似文献   

9.
    
The attitude synchronization problem for multiple spacecraft with input constraints is investigated in this paper. Two distributed control laws are presented and analyzed. First, by intro- ducing bounded function, a distributed asymptotically stable control law is proposed. Such a con- trol scheme can guarantee attitude synchronization and the control inputs of each spacecraft can be a priori bounded regardless of the number of its neighbors. Then, based on graph theory, homoge- neous method, and Lyapunov stability theory, a distributed finite-time control law is designed. Rig- orous proof shows that attitude synchronization of multiple spacecraft can be achieved in finite time, and the control scheme satisfies input saturation requirement. Finally, numerical simulations are presented to demonstrate the effectiveness and feasibility of the oroDosed schemes.  相似文献   

10.
    
The attitude control problem of a spacecraft underactuated by two single-gimbal control moment gyros (SGCMGs) is investigated. Small-time local controllability (STLC) of the attitude dynamics of the spacecraft-SGCMGs system is analyzed via nonlinear controllability theory. The conditions that guarantee STLC of the spacecraft attitude by two non-coaxial SGCMGs are obtained with the momentum of the SGCMGs as inputs, implying that the spacecraft attitude is STLC when the total angular momentum of the whole system is zero. Moreover, our results indi- cate that under the zero-momentum restriction, full attitude stabilization is possible for a spacecraft using two non-coaxial SGCMGs. For the case of two coaxial SGCMGs, the STLC property of the spacecraft cannot be determined. In this case, an improvement to the previous full attitude stabilizing control law, which requires zero-momentum presumption, is proposed to account for the singu- larity of SGCMGs and enhance the steady state performance. Numerical simulation results demonstrate the effectiveness and advantages of the new control law.  相似文献   

11.
基于反步法的挠性航天器姿态镇定   总被引:3,自引:1,他引:2  
王翔宇  丁世宏  李世华 《航空学报》2011,32(8):1512-1523
利用反步法研究了一类挠性航天器的姿态镇定问题,提出一种基于模态观测器的反步控制设计方案.首先,构造挠性模态观测器对挠性模态变量及其变化率进行观测;其次,将角速度看成虚拟控制器,设计虚拟角速度镇定运动学模型与挠性模态变量组成的子系统;最后,利用反步法设计了一种非线性控制器使得角速度能够跟踪虚拟角速度,从而实现姿态镇定的目...  相似文献   

12.
飞控系统受限控制量线性规划最优分配   总被引:2,自引:2,他引:0  
概要地介绍了具有冗余操纵面的飞控系统中受限制量分配问题的概念,数学表述方法和直接最优分配方案及其几何算法,并指出该算法在存在难于计算机实现的困难。通过分析,将该问题转化为标准线性规划问题,给出了详细的转化过程,从而使其易于计算机实现。最后通过算例说明了这处改进和算法是正确有效的。  相似文献   

13.
This paper investigates a switching control strategy for the altitude motion of a morphing aircraft with variable sweep wings based on Q-learning.The morphing process is regarded as a function of the system states and a related altitude motion model is established.Then,the designed controller is divided into the outer part and inner part,where the outer part is devised by a combination of the back-stepping method and command filter technique so that the'explosion of complexity'problem is eliminated.Moreover,the integrator structure of the altitude motion model is exploited to simplify the back-stepping design,and disturbance observers inspired from the idea of extended state observer are devised to obtain estimations of the system disturbances.The control input switches from the outer part to the inner part when the altitude tracking error converges to a small value and linear approximation of the altitude motion model is applied.The inner part is generated by the Q-learning algorithm which learns the optimal command in the presence of unknown system matrices and disturbances.It is proved rigorously that all signals of the closed-loop system stay bounded by the developed control method and controller switching occurs only once.Finally,comparative simulations are conducted to validate improved control performance of the proposed scheme.  相似文献   

14.
    
Modeling and attitude control methods for a satellite with a large deployable antenna are studied in the present paper. Firstly, for reducing the model dimension, three dynamic models for the deploying process are developed, which are built with the methods of multi-rigid-body dynam- ics, hybrid coordinate and substructure. Then an attitude control method suitable for the deploying process is proposed, which can keep stability under any dynamical parameter variation. Subse- quently, this attitude control is optimized to minimize attitude disturbance during the deploying process. The simulation results show that this attitude control method can keep stability and main- tain proper attitude variation during the deploying process, which indicates that this attitude con- trol method is suitable for practical applications.  相似文献   

15.
An adaptive dynamic surface control(DSC)scheme is proposed for the multi-input and multi-output(MIMO)attitude motion of near-space vehicles(NSVs)in the presence of external disturbance,system uncertainty and input saturation.The external disturbance and the system uncertainty are efficiently tackled using a Nussbaum disturbance observer(NDO),and the adaptive controller is constructed by combining the dynamic surface control technique to handle the problem of‘‘explosion of complexity’’inherent in the conventional backstepping method.For handling the input saturation,an auxiliary system is designed with the same order as that of the studied MIMO attitude system.Using the error between the saturation input and the desired control input as the input of the designed auxiliary system,a series of signals are generated to compensate for the effect of the saturation in the dynamic surface control design.It is proved that the developed control scheme can guarantee that all signals of the closed-loop control system are semi-globally uniformly bounded.Finally,simulation results illustrate that the proposed control scheme can achieve satisfactory tracking performance under the composite effects of the input saturation and the external disturbance.  相似文献   

16.
The variation of mass,and moment of inertia of a spin-stabilized spacecraft leads to concern about the nutation instability.Here a careful analysis on the nutation instability is performed on a spacecraft propelled by solid rocket booster (SRB).The influences of specific solid propellant designs on transversal angular velocity are discussed.The results show that the typical SRB of End Burn suppresses the non-principal axial angular velocity.On the contrary,the frequently used SRB of Radial Burn could amplify the transversal angular velocity.The nutation instability caused by a design of Radial Burn could be remedied by the addition of End Burn at the same time based on the study of the combination design of both End Burn and Radial Burn.The analysis of the results proposes the design conception of how to control the nutation motion.The method is suitable to resolve the nutation instability of solid rocket motor with complex propellant patterns.  相似文献   

17.
徐喆垚  陈宇坤  齐乃明  阳勇 《航空学报》2016,37(5):1552-1562
航天器交会对接地面模拟系统用于研究航天器交会对接过程的动力学、导航与控制等方面的相关问题。模拟器通过气浮轴承悬浮在大理石平台上来模拟太空的无摩擦微重力环境。通常情况下要保证大理石平台足够水平,由于实际平台不可能完全水平,模拟器的重力分量会使模拟器产生下滑现象,这种现象对大型地面模拟器设备尤为严重。针对模拟器的逼近过程设计了轨迹规划。为了减小测量信号噪声的影响,采用跟踪微分器(TD)对整个逼近过程中的测量信号进行滤波。针对逼近过程中模拟器存在下滑力等干扰问题设计控制器,通过扩张状态观测器(ESO)实时估计干扰量,进而对干扰量进行补偿。对模拟器冷喷气推力系统制定了推力器分配策略,采用脉冲宽度调制(PWM)技术实现对推力的近似等效。提出的控制方法应用于航天器交会对接地面模拟系统,实验结果表明所提出的控制方法能有效消除下滑力等干扰的影响。  相似文献   

18.
    
This paper investigates the distributed fixed-time attitude coordinated control problem for multiple spacecraft subject to actuator saturation under the directed topology. First, a distributed fixed-time observer is presented for each follower spacecraft to estimate the leader spacecraft’s states. Compared with the commonly used fixed-time observer, the settling time of the proposed fixed-time observer can be easily adjusted by some free design parameters. Next, a distributed fixed-time control ...  相似文献   

19.
    
《中国航空学报》2021,34(2):396-406
In this paper a nonlinear control method is proposed for the tracking control of hypersonic flight vehicles. The designed control laws do not utilize the measured flight path angle due to its inferior accuracy in practical engineering. For this, an estimated flight path angle is designed via the measurements of the altitude and velocity. A tracking differentiator is designed for constructing nonlinear disturbance observer which is used to estimate the model uncertainties including the parameter indeterminacies and external disturbances in the channels of velocity and pitch rate. A robust high-order differentiator is introduced to avoid the employment of the measured flight path angle and estimate the lumped disturbance in dynamics of flight path angle. Meanwhile, the possible saturation of the control inputs is considered and compensated by the auxiliary states. The boundness of closed-loop signals is proved through the Lyapunov theory. Comparative simulations are carried out and the results demonstrate the effectiveness of the proposed method.  相似文献   

20.
针对冲压发动机导弹大过载机动控制问题,设计了基于干扰观测器的反演控制器.根据导弹纵向运动方程建立了过载控制和马赫数控制模型,将模型存在的不确定性和扰动视为总干扰,采用扩张状态观测器进行精确估计,然后设计了过载回路和马赫数回路的反演控制器,为避免对控制器中的虚控制量多次求导导致\"微分膨胀\",采用反正切跟踪微分器对其进行精...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号