首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
With the rapid growth of flight flow, the workload of controllers is increasing daily, and handling flight conflicts is the main workload. Therefore, it is necessary to provide more efficient conflict resolution decision-making support for controllers. Due to the limitations of existing methods, they have not been widely used. In this paper, a Deep Reinforcement Learning(DRL) algorithm is proposed to resolve multi-aircraft flight conflict with high solving efficiency. First, the characteristics ...  相似文献   

2.
A strategic flight conflict avoidance approach based on a memetic algorithm   总被引:1,自引:1,他引:0  
Conflict avoidance (CA) plays a crucial role in guaranteeing the airspace safety. The cur- rent approaches, mostly focusing on a short-term situation which eliminates conflicts via local adjust- ment, cannot provide a global solution. Recently, long-term conflict avoidance approaches, which are proposed to provide solutions via strategically planning traffic flow from a global view, have attracted more attentions. With consideration of the situation in China, there are thousands of flights per day and the air route network is large and complex, which makes the long-term problem to be a large-scale combinatorial optimization problem with complex constraints. To minimize the risk of premature convergence being faced by current approaches and obtain higher quality solutions, in this work, we present an effective strategic framework based on a memetic algorithm (MA), which can markedly improve search capability via a combination of population-based global search and local improve- ments made by individuals. In addition, a specially designed local search operator and an adaptive local search frequency strategy are proposed to improve the solution quality. Furthermore, a fast genetic algorithm (GA) is presented as the global optimization method. Empirical studies using real traffic data of the Chinese air route network and daily flight plans show that our approach outper- formed the existing approaches including the GA .based approach and the cooperative coevolution based approach as well as some well-known memetic algorithm based approaches.  相似文献   

3.
《中国航空学报》2021,34(5):315-330
In an effort to maintain safety while satisfying growing air traffic demand, air navigation service providers are considering the inclusion of advisory systems to identify potential conflicts and propose resolution commands for the air traffic controller to verify and issue to aircraft. To understand the potential workload implications of introducing advisory conflict-detection and resolution tools, this paper examines a metric of controller taskload: how many resolution commands an air traffic controller issues under the guidance of an advisory system. Through a simulation study, the research presented here evaluates how the underlying protocol of a conflict-resolution tool affects the controller taskload (system demands) associated with the conflict-resolution process, and implicitly the controller workload (physical and psychological demands). Ultimately, evidence indicates that there is significant flexibility in the design of conflict-resolution algorithms supporting an advisory system.  相似文献   

4.
空中交通流量的持续增加对中、短期飞行冲突探测的精度与处理大量目标的能力的要求更高,提出基于集成学习(ensemble learning)的冲突探测算法。首先,对飞机冲突过程建模,收集飞行样本;其次,提取飞机当前位置、速度矢量、向前看时间、待转弯时刻和转角为特征量,训练基本分类器,获得元数据集;然后,以支持向量机为二级分类器,元数据集为新的特征量,训练Stacking元分类器(meta classifier),分类阶段通过Sigmoid函数概率映射法输出冲突概率;最后进行仿真分析。结果表明:基于集成学习的冲突探测算法对冲突探测具有较高的准确率,使得虚警概率大幅下降,且适用于转弯飞行。  相似文献   

5.
Obstacle avoidance and path planning for carrier aircraft launching   总被引:2,自引:4,他引:2  
  相似文献   

6.
《中国航空学报》2020,33(11):2851-2863
Recent years have witnessed a booming of the industry of civil Unmanned Aircraft System (UAS). As an emerging industry, the UAS industry has been attracting great attention from governments of all countries and the aviation industry. UAS are highly digitalized, informationized, and intelligent; therefore, their integration into the national airspace system has become an important trend in the development of civil aviation. However, the complexity of UAS operation poses great challenges to the traditional aviation regulatory system and technical means. How to prevent collisions between UASs and between UAS and manned aircraft to achieve safe and efficient operation in the integrated operating airspace has become a common challenge for industry and academia around the world. In recent years, the international community has carried out a great amount of work and experiments in the air traffic management of UAS and some of the key technologies. This paper attempts to make a review of the UAS separation management and key technologies in collision avoidance in the integrated airspace, mainly focusing on the current situation of UAS Traffic Management (UTM), safety separation standards, detection system, collision risk prediction, collision avoidance, safety risk assessment, etc., as well as an analysis of the bottlenecks that the current researches encountered and their development trends, so as to provide some insights and references for further research in this regard. Finally, this paper makes a further summary of some of the research highlights and challenges.  相似文献   

7.
《中国航空学报》2023,36(2):149-159
In satellite anomaly detection, there are some problems such as unbalanced sample distribution, fewer fault samples, and unobvious anomaly characteristics. These problems cause the extisted anomaly detection methods are difficult to train accurate classification model, and the accuracy of anomaly detection is hard to improve. At the same time, the monitoring data of satellite has high dimension and is difficult to extract effective features. Based on the DTW over-sampling method, this paper realizes the over-sampling of fault samples in satellite time series, and constructs a distributed and balanced time series data set. The Fast-DTW method is applied to calculate the distance between different time series, which can improve the speed of similarity calculation. KNN (K-Nearest Neighbor) method is applied for classification and the best classification result is obtained by search the optimal hyper-parameters k. The results show that the proposed method has high anomaly detection accuracy and consumes short calculation time.  相似文献   

8.
Under the demand of strategic air traffic flow management and the concept of trajectory based operations (TBO),the network-wide 4D flight trajectories planning (N4DFTP) problem has been investigated with the purpose of safely and efficiently allocating 4D trajectories (4DTs) (3D position and time) for all the flights in the whole airway network.Considering that the introduction of large-scale 4DTs inevitably increases the problem complexity,an efficient model for strategic level conflict management is developed in this paper.Specifically,a bi-objective N4DFTP problem that aims to minimize both potential conflicts and the trajectory cost is formulated.In consideration of the large-scale,high-complexity,and multi-objective characteristics of the N4DFTP problem,a multi-objective multi-memetic algorithm (MOMMA) that incorporates an evolutionary global search framework together with three problem-specific local search operators is implemented.It is capable of rapidly and effectively allocating 4DTs via rerouting,target time controlling,and flight level changing.Additionally,to balance the ability of exploitation and exploration of the algorithm,a special hybridization scheme is adopted for the integration of local and global search.Empirical studies using real air traffic data in China with different network complexities show that the pro posed MOMMA is effective to solve the N4DFTP problem.The solutions achieved are competitive for elaborate decision support under a TBO environment.  相似文献   

9.
In this paper, a four-dimensional coordinated path planning algorithm for multiple UAVs is proposed, in which time variable is taken into account for each UAV as well as collision free and obstacle avoidance. A Spatial Refined Voting Mechanism(SRVM) is designed for standard Particle Swarm Optimization(PSO) to overcome the defects of local optimal and slow convergence.For each generation candidate particle positions are recorded and an adaptive cube is formed with own adaptive side length to indicate occupied regions. Then space voting begins and is sorted based on voting results, whose centers with bigger voting counts are seen as sub-optimal positions. The average of all particles of corresponding dimensions are calculated as the refined solutions. A time coordination method is developed by generating specified candidate paths for every UAV, making them arrive the same destination with the same time consumption. A spatial-temporal collision avoidance technique is introduced to make collision free. Distance to destination is constructed to improve the searching accuracy and velocity of particles. In addition, the objective function is redesigned by considering the obstacle and threat avoidance, Estimated Time of Arrival(ETA), separation maintenance and UAV self-constraints. Experimental results prove the effectiveness and efficiency of the algorithm.  相似文献   

10.
In low-altitude air traffic management, non-cooperation targets are the greatest threat to security of low-flying aircraft. Among various aviation fatalities, flying bird is the main factor with the highest risk and directs economic losses amounted to nearly 10 billion US dollars each year. Therefore, Flying Bird Detection (FBD) has attracted considerable attention in low-altitude air traffic management. In this paper, we propose a skeleton based FBD method via describing bird motion information with a set of key poses. To overcome the variability of birds, the skeleton feature is selected as a relatively fixed and common characteristic for the pose appearance of flying bird. Based on the geometric topology among some key parts of bird body, a set of key poses can be described by some extracted skeleton features, which are used to represent the bird motion information. Aimed at robustly handling with the pose variations, multiple pose-specific classifiers are individually trained to learn the representative poses of the flying bird. At the detection stage, the flying bird skeleton features are combined with extracted key-pose sets to perform the flying bird classification task from each image. Afterwards, the key-frame pose-change set and the consistency of the classification results from sequent images are employed to validate the final detection results. Experiments on flying bird datasets demonstrate the effectiveness and efficiency of the proposed method.  相似文献   

11.
This paper presents a computationally efficient real-time trajectory planning framework for typical unmanned combat aerial vehicle (UCAV) performing autonomous air-to-surface (A/S) attack. It combines the benefits of inverse dynamics optimization method and receding horizon optimal control technique. Firstly, the ground attack trajectory planning problem is mathematically formulated as a receding horizon optimal control problem (RHC-OCP). In particular, an approximate elliptic launch acceptable region (LAR) model is proposed to model the critical weapon delivery constraints. Secondly, a planning algorithm based on inverse dynamics optimization, which has high computational efficiency and good convergence properties, is developed to solve the RHCOCP in real-time. Thirdly, in order to improve robustness and adaptivity in a dynamic and uncer- tain environment, a two-degree-of-freedom (2-DOF) receding horizon control architecture is introduced and a regular real-time update strategy is proposed as well, and the real-time feedback can be achieved and the not-converged situations can be handled. Finally, numerical simulations demon- strate the efficiency of this framework, and the results also show that the presented technique is well suited for real-time implementation in dynamic and uncertain environment.  相似文献   

12.
我国民航事业的发展需要依靠大型运输客机的自主研发和高效的空中交通管理体系两大软硬实力的支撑。空中交通管制员作为空中交通管理的核心要素,其疲劳状态的检测与管理对于航空安全具有重要作用。本文首先从传统主观量表评定和客观评定方法两个方面详细阐述了国内外疲劳检测的研究成果,分析其优缺点;然后介绍了基于语音分析的管制员疲劳特征提取与检测算法,并且着重介绍了基于深度学习模型的语音疲劳状态识别算法;最后阐述了管制员疲劳检测成果对管制运行安全和效率提升的应用前景。研究成果可为从事管制员疲劳检测与管理的研究人员提供参考和借鉴。  相似文献   

13.
一种新的间断侦测器及其在DGM中的应用   总被引:1,自引:0,他引:1  
根据单元交界面左右变量的差别,提出了一种新的间断侦测器构造方法。该间断侦测器的构造原理简单,编程实现容易。针对一维和二维Euler方程,我们将此间断侦测器用于间断Galerkin格式的数值计算中。数值实验表明本文构造的间断侦测器能够准确捕捉到激波的位置,从而只在间断区域引入限制器,在减少计算量、保证光滑区计算精度的同时,提高了激波等强间断的分辨率,能够明显地改善流动精细结构的模拟精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号