首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
The typical behavior of unsteady flow and force evolution in a number of applications, such as aero-elastics, gust-wing interaction, flapping flight and flight maneuvering, can be understood using the starting flow model. Starting flow model is obtained either by setting rapidly an angle of attack for a wing moving at constant speed, or by accelerating a wing to a constant speed while gaining an angle of attack. In the limiting case of impulsively starting flow, the wing is assumed to gain suddenly an angle of attack in an initially uniform flow. Theories have been developed for impulsively starting flow at small angle of attack long before and at large angle of attack only recently, especially for incompressible and supersonic flow. This paper intends to provide a state-of-art overview of the typical flow phenomena, force evolution characteristics and developed theories for impulsively starting flow at any angle of attack and for both lower speed flow (vortex dominated) and high speed flow (compressible wave dominated). This review also provides some new topics that deserve further studies.  相似文献   

2.
Impulsively starting flow, by a sudden attainment of a large angle of attack, has been well studied for incompressible and supersonic flows, but less studied for subsonic flow. Recently, a preliminary numerical study for subsonic starting flow at a high angle of attack displays an advance of stall around a Mach number of 0.5, when compared to other Mach numbers. To see what happens in this special case, we conduct here in this paper a further study for this case, to display and analyze the full flow structures. We find that for a Mach number around 0.5, a local supersonic flow region repeatedly splits and merges, and a pair of left-going and right-going unsteady shock waves are embedded inside the leading edge vortex once it is sufficiently grown up and detached from the leading edge. The flow evolution during the formation of shock waves is displayed in detail. The reason for the formation of these shock waves is explained here using the Laval nozzle flow theory. The existence of this shock pair inside the vortex, for a Mach number only close to 0.5, may help the growing of the trailing edge vortex responsible for the advance of stall observed previously.  相似文献   

3.
压缩拐角激波与旁路转捩边界层干扰数值研究   总被引:1,自引:4,他引:1  
为了研究激波与旁路转捩边界层的干扰机理,采用直接数值模拟(DNS)方法对来流马赫数Ma∞=2.9,24°压缩拐角内激波与转捩边界层的相互作用进行了系统的研究。考察了旁路转捩干扰下压缩拐角内分离区形态和激波波系结构的典型特征。比较了转捩干扰与湍流干扰流动结构的差异,并分析了造成差异的原因。研究了拐角内转捩边界层的演化特性,探讨了转捩干扰下脉动峰值压力和峰值摩阻的分布规律及形成机制。研究结果表明:相较于湍流干扰,两侧发卡涡串的展向挤压使得分离区起始点以V字型分布,且分离激波沿展向以破碎状态为主,激波脚呈现多层结构;拐角内的干扰作用急剧加速了边界层的转捩过程;转捩干扰下的拐角内峰值脉动压力以单峰结构出现在分离区的下游,同时干扰区内的强湍动能和高雷诺剪切应力使得其局部峰值摩阻系数要高于湍流干扰。  相似文献   

4.
《中国航空学报》2024,37(8):79-90
Accurate prediction of the aerodynamic response of a compressor under inlet distortion is crucial for next-generation civil aircraft,such as Boundary Layer Ingestion(BLI)silent aircraft.Therefore,research on the Body Force(BF)model plays a significant role in achieving this objec-tive.However,distorted inlet airflow can lead to varying operating conditions across different spa-tial locations of the compressor,which may cause some regions to operate outside the stability boundary.Consequently,the accuracy of BF model simulations might be compromised.To address this issue,this paper proposes a numerical simulation strategy for acquiring the steady axisymmetric three-dimensional flow field of a compressor operating at low mass flow rates,which is known as the Underlying Axisymmetric Pressure Rise Characteristic(UAPRC).The proposed simulation accounts for two different rotor speeds of a transonic compressor and identifies initial positions in the flow field where deterioration occurs based on prior experimental investigations.Moreover,simulation results are incorporated into the BF model to replicate hub instability observed in exper-iments.Obtained results demonstrate that this strategy provides valid predictions of the UAPRC of the compressor,thereby addressing the limitations associated with the BF model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号