首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Pressure sensing and schlieren imaging with high resolution and sensitivity are applied to the study of the interaction of single-pulse laser energy with bow shock at Mach 5. An Nd:YAG laser operated at 1.06 lm, 100 mJ pulse energy is used to break down the hypersonic flow in a shock tunnel. Three-dimensional Navier–Stokes equations are solved with an upwind scheme to simulate the interaction. The pressure at the stagnation point on the blunt body is measured and calculated to examine the pressure variation during the interaction. Schlieren imaging is used in conjunction with the calculated density gradients to examine the process of the interaction. The results show that the experimental pressure at the stagnation point on the blunt body and schlieren imaging fit well with the simulation. The pressure at the stagnation point on the blunt body will increase when the transmission shock approaches the blunt body and decrease with the formation of the rarefied wave. Bow shock is deformed during the interaction. Quasi-stationary waves are formed by high rate laser energy deposition to control the bow shock. The pressure and temperature at the stagnation point on the blunt body and the wave drag are reduced to 50%, 75% and 81% respectively according to the simulation. Schlieren imaging has provided important information for the investigation of the mechanism of the interaction.  相似文献   

2.
《中国航空学报》2016,(1):91-103
A theoretical nonlinear aeroelastic response analysis for a flexible high-aspect ratio wing excited by harmonic gust load is presented along with a companion wind tunnel test. A multidisci-plinary coupled numerical calculation is developed to simulate the flexible model wing undergoing gust load in the time domain via discrete nonlinear finite element structural dynamic analysis and nonplanar unsteady vortex lattice aerodynamic computation. A dynamic perturbation analysis about a nonlinear static equilibrium is also used to determine the small perturbation flutter bound-ary. A novel noncontact 3-D camera measurement analysis system is firstly used in the wind tunnel test to obtain the spatial large deformation and responses. The responses of the flexible wing under different static equilibrium states and frequency gust loads are discussed. The fair to good quanti-tative agreements between the theoretical and experimental results demonstrate that the presented analysis method is an acceptable way to predict the geometrically nonlinear gust response for flex-ible wings.  相似文献   

3.
《中国航空学报》2016,(6):1635-1648
A finite element formulation is presented for the analysis of the aeroelastic effect on the aerothermoacoustic response of metallic panels in supersonic flow. The first-order shear deforma-tion theory (FSDT) and the von Karman nonlinear strain-displacement relationships are employed to consider the geometric nonlinearity induced by large deflections. The piston theory and the Gaus-sian white noise are used to simulate the mean flow aerodynamics and the turbulence from the boundary layer. The thermal loading is assumed to be steady and uniformly distributed, and the material properties are assumed to be temperature independent. The governing equations of motion are firstly formulated in structural node degrees of freedom by using the principle of virtual work, and then transformed and reduced to a set of coupled nonlinear Duffing oscillators in modal coor-dinates. The dynamic response of a panel is obtained by the Runge-Kutta integration method. The results indicate that the increasing aeroelastic effect can lead the panel vibration from a random motion to a highly ordered motion in the fashion of diffused limit cycle oscillations (LCOs), and remarkably alter the stochastic bifurcation and the spectrum of the aerothermoacoustic response. On the other hand there exists a counterbalance mechanism between the external random loading and the aeroelastic effect, which mainly functions through the nonlinear frequency-amplitude response. It is surmised that the aeroelastic effect must be considered in sonic fatigue analysis for panel structures in supersonic flow.  相似文献   

4.
Calibration of robotic drilling systems with a moving rail   总被引:2,自引:1,他引:2  
Industrial robots are widely used in aircraft assembly systems such as robotic drilling systems. It is necessary to expand a robot's working range with a moving rail. A method for improving the position accuracy of an automated assembly system with an industrial robot mounted on a moving rail is proposed. A multi-station method is used to control the robot in this study. The robot only works at stations which are certain positions defined on the moving rail. The calibration of the robot system is composed by the calibration of the robot and the calibration of the stations.The calibration of the robot is based on error similarity and inverse distance weighted interpolation.The calibration of the stations is based on a magnetic strip and a magnetic sensor. Validation tests were performed in this study, which showed that the accuracy of the robot system gained significant improvement using the proposed method. The absolute position errors were reduced by about 85%to less than 0.3 mm compared with the maximum nearly 2 mm before calibration.  相似文献   

5.
WEI Xin 《航空动力学报》2010,25(10):2352-2357
A study on the character of pressure wave propagation was proposed for the gas liquid oxygen two-phase flow in the pipe between pumps.According to the practical working conditions,the homogenous model based on the compressibility theory regarding a single bubble in an infinite liquid,and Redlich-Kwong gas equation was derived a model for the low temperature and high pressure case,especially considering the change of the ratio of density of gas to one of liquid.The numerical tests were conducted.The results not only show the agreement between numerical simulation for this model and experiment at the normal temperature and pressure is good,but also show that the modifications of the model for the low temperature and high pressure condition are necessary.The study is of reference to further study of oscillation restrain and relative pipe tests.   相似文献   

6.
A large-scale high altitude environment simulation test cabin was developed to accurately control temperatures and pressures encountered at high altitudes. The system was developed to provide slope-tracking dynamic control of the temperature–pressure two-parameter and overcome the control difficulties inherent to a large inertia lag link with a complex control system which is composed of turbine refrigeration device, vacuum device and liquid nitrogen cooling device. The system includes multi-parameter decoupling of the cabin itself to avoid equipment damage of air refrigeration turbine caused by improper operation. Based on analysis of the dynamic characteristics and modeling for variations in temperature, pressure and rotation speed, an intelligent controller was implemented that includes decoupling and fuzzy arithmetic combined with an expert PID controller to control test parameters by decoupling and slope tracking control strategy. The control system employed centralized management in an open industrial ethernet architecture with an industrial computer at the core. The simulation and field debugging and running results show that this method can solve the problems of a poor anti-interference performance typical for a conventional PID and overshooting that can readily damage equipment. The steady-state characteristics meet the system requirements.  相似文献   

7.
Turbulence affects both combustion and NO formation. Fluctuation correlations are ideally used for quantitative analysis. From the instantaneous chemical reaction rate expression,ignoring the third-order correlation terms, the averaged reaction rate will have four terms, including the term of averaged-variable product, a concentration fluctuation correlation term, and temperature-concentration fluctuation correlation term. If the reaction-rate coefficient is denoted as K, the temperature fluctuation would be included in the K fluctuation. In order to quantitatively study the effect of turbulence on NO formation in methane-air swirling combustion, various turbulencechemistry models are tested. The magnitudes of various correlations and their effects on the time-averaged reaction rate are calculated and analyzed, and the simulation results are compared with the experimental measurement data. The results show that among various correlation moments, the correlation between the reaction-rate coefficient K fluctuation with the concentration fluctuation is most important and is a strong nonlinear term.  相似文献   

8.
The paper deals with state estimation problem of nonlinear non-Gaussian discrete dynamic systems for improvement of accuracy and consistency. An efficient new algorithm called the adaptive Gaussian-sum square-root cubature Kalman filter(AGSSCKF) with a split-merge scheme is proposed. It is developed based on the squared-root extension of newly introduced cubature Kalman filter(SCKF) and is built within a Gaussian-sum framework. Based on the condition that the probability density functions of process noises and initial state are denoted by a Gaussian sum using optimization method, a bank of SCKF are used as the sub-filters to estimate state of system with the corresponding weights respectively, which is adaptively updated. The new algorithm consists of an adaptive splitting and merging procedure according to a proposed split-decision model based on the nonlinearity degree of measurement. The results of two simulation scenarios(one-dimensional state estimation and bearings-only tracking) show that the proposed filter demonstrates comparable performance to the particle filter with significantly reduced computational cost.  相似文献   

9.
Hypersonic vehicles emit strong infrared(IR) radiation signatures that can be treated as a detecting source for object identification and routine diagnosis. This paper is aimed at examining the intrinsic radiation characteristics of a Boost-Glide Vehicle(BGV) under the condition of various Angles of Attack(AOAs). A two-temperature model considering the thermal and chemical nonequilibrium effects is coupled with Navier-Stokes equations solved by the finite volume technique.A gas–solid conjunction heat transfer model is also added into the fluid solver to simulate the surface temperature of the vehicle. The radiative transfer equation is solved with Line of Sight(LOS)algorithm. The computational results for a Hypersonic Technology Vehicle-2(HTV-2) type vehicle show that radiances of the vehicle are strongly dependent on the surface temperature. The presence of AOA results in the significant difference of the surface temperature. Infrared radiation characteristics are also changed in intensity and spectral band due to the AOA. Simulations are performed with two time-varying AOAs. Transient results indicate that the variation of AOA does have a great effect on the infrared radiance and is closely related to observation angle, spectral band, angle size,angular velocity and time history.  相似文献   

10.
Aircraft icing has long been a plague to aviation for its serious threat to flight safety. Even though lots of methods for anti-icing have been in use or studied for quite a long time, new methods are still in great demand for both civil and military aircraft. The current study in this paper uses widely used Dielectric Barrier Discharge(DBD) plasma actuation to anti-ice on a NACA0012 airfoil model with a chord length of 53.5 cm in a closed-circuit icing wind tunnel. An actuator was installed at the leading edge of the airfoil model, and actuated by a pulsed low-temperature plasma power source. The actuator has two types of layout, a striped electrode layout and a meshy electrode layout.The ice accretion process or anti-icing process was recorded by a CCD camera and an infrared camera. Instantaneous pictures and infrared contours show that both types of DBD plasma actuators have the ability for anti-ice under a freestream velocity of 90 m/s, a static temperature of -7℃,an Median Volume droplet Diameter(MVD) of 20 lm, and an Liquid Water Content(LWC) of 0.5 g/m~3. The detected variations of temperatures with time at specific locations reveal that the temperatures oscillate for some time after spraying at first, and then tend to be nearly constant values.This shows that the key point of the anti-icing mechanism with DBD plasma actuation is to achieve a thermal equilibrium on the model surface. Besides, the power consumption in the anti-icing process was estimated in this paper by Lissajous figures measured by an oscilloscope, and it is lower than those of existing anti-icing methods. The experimental results presented in this paper indicate that the DBD plasma anti-icing method is a promising technique in the future.  相似文献   

11.
《中国航空学报》2021,34(1):320-326
The thermal stability of sprayable fast-responding Pressure-Sensitive Paint (fast PSP) was investigated to explore the possibility for application in turbomachinery and hypersonic research with temperature above 100 °C. The first part of the study focused on a widely-used Polymer Ceramic PSP (PC-PSP). The effects of thermal degradation on its key sensing properties, including luminescent intensity, pressure sensitivity and response time, were examined for a temperature range from 60 to 100 °C. Severe degradation in intensity and pressure sensitivity was found as temperature reached 70 °C or higher, which would cause failure of PSP application in these conditions. Subsequently, a fast-responding Mesoporous-Particle PSP (MP-PSP) was developed which did not show degradation effects until 140 °C. The greatly improved thermal stability of MP-PSP was attributed to: selection of polymer with higher glass transition temperature (polystyrene) to delay the saturation effect of oxygen quenching as temperature increased; porous and hollow structure of particles for luminophore deposition that minimizes polymer–luminophore interaction. This new paint formulation has significantly raised the upper temperature limit of fast PSP and offers more opportunities for applications in harsh environment.  相似文献   

12.
应用压力敏感涂料测量孤立叶片吸力面压力(英文)   总被引:2,自引:0,他引:2  
以国产温度不敏感的荧光压力敏感涂料和自主建立的测量系统为基础,应用基于光强的压力敏感涂料测量技术获得了叶栅风洞中孤立叶片吸力面的压力分布。实验测量分别在叶栅风洞出口处气流速度0.3和0.4马赫条件下进行,叶片攻角–12°,大气温度与压力分别为15 ℃和95.4kPa。实验叶片吸力面有4排10列测压孔,弯度约40°左右,叶片连同基座被固定在叶栅风洞出口处的下导流档板上,以方便采集荧光图像。实验测量中还同时采用了静压扫描装置进行常规压力测量,以便进行数据对比。在理论与方法确立方面,对基于光强的测量方法进行了回顾并针对自主建立的测量系统提出采用事后校准的方式进行先验校准,以消除校准与测量中参考压力不一致所引起的误差;提出了荧光图像后处理过程的实施步骤及图像对准的操作方法以进一步提高测量的准确性。压力敏感涂料测量所获得的压力值与静压扫描所得数值之间的误差在7%之内,说明实验测量是有效可信的。  相似文献   

13.
压力敏感涂料特性及其校准技术实验研究   总被引:3,自引:0,他引:3  
 精细化的校准技术和涂料特性研究是影响压力敏感涂料(PSP)测量技术测量精度及其工程应用的重要因素。为此以PSP地面实验测量系统为主要平台,进行了国产PSP的静态校准和光降解实验,基于自主编制的PSP静态校准图像后处理程序研究了PSP压力、温度灵敏度之外所展现出的重要特性。研究结果表明:一定压力范围内,PSP的Stern-Volmer响应曲线呈现出较为明显的非线性,在校准中应采取高阶Stern-Volmer关系式进行拟合;在均匀压力和温度下,不同样片区域的校准结果呈现出空间不均匀性,这种不均匀性会影响PSP的校准精度;PSP存在光降解效应,其降解曲线在一定时间内近似为线性。同时,本文还简要分析了其产生机理以及对PSP测量精度的影响,初步提出了相应的评估指标及改进措施。  相似文献   

14.
高丽敏  姜衡  葛宁  杨冠华  赵崇祥 《航空学报》2020,41(10):123667-123667
动态压力是气动部件表面的关键气动参数。光学压力敏感涂料(PSP)测量技术在测量气动部件表面动态压力方面具有全域测量、不影响流场自身的优势,而光学压力敏感涂料的动态响应特性则是进行动态压力测量的决定性因素。基于声学驻波管原理,自主设计并组建了正弦波型高频动态压力光学校准系统,主要包含有驻波管型校准舱、声源、激光源、高频压力传感器、光电倍增管以及测控系统。对动态压力光学校准系统及某新型快响压敏涂料的实验结果表明,所组建的动态压力校准系统可产生最短响应时间12.5 μs、最大压力幅值为4.37 kPa的正弦型动态压力,其有效动态频响范围为0.4~20.0 kHz(50 μs~2.5 ms),不确定度小于0.004 9%;校准系统合理的光路布局可进行快响压敏涂料动态特性的校准,所测涂料可用于动态频响不高于9.1 kHz(响应时间为109.9 μs)的非定常流场的压力测量。  相似文献   

15.
李井洋  马宏伟  贺象 《航空动力学报》2012,27(10):2262-2268
发展了1种楔顶圆柱双孔高频压力探针测量三维动态流场的方法,并应用于某跨声速多级轴流压气机转子出口流场测量.该探针测量方法基于4孔针测量原理,通过旋转探针在3个角度测量的方法实现,并采用最小二乘拟合方法对探针气动校准数据进行处理,对拟合误差进行优化,得到最佳拟合阶次,进而获得精度较高的求解流场参数的近似函数.相比国内外同类探针,该楔顶圆柱双孔高频压力探针尺寸小、频响快、测量范围宽、测量精度高.借助高速锁相数据采集技术,利用该探针测量了某跨声速多级压气机转子出口三维动态流场,测量结果反映了该转子流动特征,提供了转子出口气流偏转角、俯仰角、总压、马赫数分布,并为优化压气机级间匹配指明了方向,为压气机流场诊断提供了一套行之有效的测量手段,验证了该高频压力探针测量技术的工程应用价值.   相似文献   

16.
提出了适用于高超声速风洞开展压敏漆(PSP)试验研究的关键技术及解决办法。采用自主设计的PSP校准系统及测试系统,考核了代号为EC-PSP的压力敏感涂料在高超声速条件下的适用性、图像处理软件功能以及高温条件影响下数据处理方法的可行性。以压缩拐角模型为例开展了马赫数为5的高超声速PSP技术验证性风洞试验研究,辅以红外测温方法获得模型表面连续温度分布。试验结果表明在高超声速风洞开展的PSP试验技术研究清晰地捕获了基于压力变化的压缩拐角模型表面流动特征,实现了连续压力分布的测量。  相似文献   

17.
光学压力敏感涂料测量技术是一种新的测压技术,具有免接触、可连续大范围测量等特点,国外已广泛应用于风洞测量。文中介绍了PSP技术基本原理、测试系统的组成、特性参数的标定和使用该技术测量的方法及特点,并阐述了该技术的未来发展方向。  相似文献   

18.
本文介绍了应用基于发光强度的全域压力测量方法进行叶片表面压力分布的一系列实验结果。在自主建立光学压力测量系统和自主研发国产压力敏感涂料的基础上,对高亚音速叶栅风洞出口处大弯度孤立叶片吸力面和对转压气机实验平台出口整流叶片吸力面的压力分布进行了测量,并采用传统电子静压扫描装置在高亚音速叶栅风洞中进行了同步测量。光学压力测量与电子压力扫描结果的对比表明所建立的光学压力测量系统可用于内流场测量,其精度达到了工程应用水平。  相似文献   

19.
一种爆膜式动压测量校准系统   总被引:2,自引:2,他引:2  
江勇 《航空动力学报》1996,11(3):320-322,335-336
研制了一种结构简单的爆膜式动态压力测量的校准系统,用于频响不大于1kHz的动态压力测量系统的动态特性校准。实验表明:其信号发生器能够产生足够的频率成份用于激励;系统只需一次实验便可得到被校系统的频响特性,方法简便。  相似文献   

20.
压力敏感涂料及其测量技术   总被引:1,自引:0,他引:1  
陈柳生  周强  金熹高  张永存 《航空学报》2009,30(12):2435-2448
压力敏感涂料(PSP)测量技术是20世纪80年代发展起来的光学压力测量技术,以其非接触测量方式、真实反映实验物体表面连续的压力分布变化、高的空间分辨率及其节约时间与良好的经济效益等突出优势,在国外得到了广泛的工程应用。本文基于空气动力实验中压力测量的基本要求, 概括地介绍了发光氧猝灭的PSP的工作原理、其测量技术的特点和技术发展现状,阐述了PSP的基本组成、分类标准及种类,对比分析了基于光强和基于寿命的测量方法在实验测量中的优势与不足,并就未来PSP及其测量技术的发展前景进行了讨论。介绍了近十年来国内应用PSP测量技术在低速、高速风洞中对机翼表面压力分布和单叶片在高亚声速平面叶栅风洞和对转压气机出口导流叶片吸力面的实验测量,与测压孔测量结果比较,均取得满意的工程应用效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号