共查询到20条相似文献,搜索用时 0 毫秒
1.
G Moreels J Clairemidi P Rousselot 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1995,15(3):65-70
After subtracting the intense dust-scattered continuum from the original spectra transmitted by the Vega 2 three-channel spectrometer, a broad-band emission emerges in the 342-375 nm spectral range when the cometocentric projected distance p is smaller than 5000 km. This newly detected emission varies as p-1, which implies that the involved molecule(s) has a parent-type behavior. The emission band presents four peaks at 347, 356, 364 and 373 nm. It is tentatively identified as being due to phenanthrene, a three-cycle aromatic condensed hydrocarbon. A determination of the gQ product, where g is the fluorescence quantum efficiency and Q the production rate gives gQ = 1.2 x 10(25). If g = 0.012, it comes Q = 1 x 10(27) s-1. The detection of phenanthrene in Halley's inner coma is an important argument in favor of a similarity of composition between cometary material and interstellar matter. It supports the hypothesis that comets have kept trace of the interstellar composition through the solar system formation epoch. 相似文献
2.
Wolfgang Trogus Rolf Ockert Rolf Dieter Auer 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1981,1(8):131-136
A European probe to comet Halley is proposed. The probe's model payload consists of 8 scientific instruments, viz. neutral, ion and dust impact mass spectrometers, magnetometer, medium energy ion and electron analyzer, camera, dust impact detectors and plasma wave experiment. Fly-by of the comet Halley nucleus will take place on November 28th, 1985, at about 500 km miss distance. The main spacecraft serves as relay link to transmit the observed data to Earth. As probe, a modified ISEE 2 design is proposed. Because of the cometary dust hazard expected in the coma a heavy dust shield (27 kg) is required, consisting of a thin front sheet and a 3 layer rear sheet. The probe is spin-stabilized (12 rpm), has no active attitude and orbit control capability and uses battery power only to provide about 1000 Wh for a measuring phase. A despun antenna transmits up to 20 kbit/s, in X-band. The total probe mass is estimated at 250 kg. The 3 model development programme should start in mid 1981 with Phase B. 相似文献
3.
J. M. Lamarre C. Emerich R. Gispert N. Coron 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1985,5(12):123-126
The Infrared thermal emission of the nucleus has been observed by the imaging channel of the infrared spectrometer IKS during the fly-by of Comet Halley by the VEGA 1 probe. An emissive region with a temperature in excess of 300 K has been detected. The results are compatible with a simplified model assuming a spherical nucleus covered by an insulating black material. 相似文献
4.
M. S. Hanner 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1985,5(12):325-334
Highlights of infrared observations of the dust are discussed and compared with first results from the space probes. An emission feature was detected at 3.4 μm; the 10 and 20 μm silicate features were well-observed; and far-infrared data out to 160 μm were obtained. Organic material seems to be abundant in grains and may explain the 3.4 μm emission. Calculations are presented for one example of organic material. A component of the grains may volatize at temperatures around 300 K. 相似文献
5.
J.Mayo Greenberg 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,4(9):211-212
A comet nucleus considered as an aggregate of interstellar dust would produce a mist of very finely divided (radius ~ 0.01 μm) particles of carbon and metal oxides accompanying the larger dust grains. These small particles which are very abundant in the interstellar dust size spectrum would provide substantial physical effects because of their large surface area. They may show up strongly in particle detectors on the Halley probes. A strong basis for serious consideration of these particles comes from the other evidence that interstellar dust grains are the building blocks of comets; e.g. (1) the explanation of the “missing” carbon in comets; (2) The S2 molecule detection which suggests that the comet solid ice materials have been previously subjected to ultraviolet radiation (as are interstellar grains) before aggregation into the comet; (3) the predicted dust to gas ratio. 相似文献
6.
S. Ibadov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
Problems connected with mechanisms for comet brightness outbursts as well as for gamma-ray bursts remain open. Meantime, calculations show that irradiation of a certain class of comet nuclei, having high specific electric resistance, by intense fluxes of energetic protons and positively charged ions with kinetic energies more than 1 MeV/nucleon, ejected from the Sun during strong solar flares, can produce a macroscopic high-voltage electric double layer with positive charge in the subsurface zone of the nucleus, during irradiation times of the order of 10–100 h at heliocentric distances around 1–10 AU. The maximum electric energy accumulated in such layer will be restricted by the electric discharge potential of the layer material. For comet nuclei with typical radii of the order of 1–10 km the accumulated energy of such natural electric capacitor is comparable to the energy of large comet outbursts that are estimated on the basis of ground based optical observations. The impulse gamma and X-ray radiation together with optical burst from the comet nucleus during solar flares, anticipated due to high-voltage electric discharge, may serve as an indicator of realization of the processes above considered. Multi-wavelength observations of comets and pseudo-asteroids of cometary origin, having brightness correlation with solar activity, using ground based optical telescopes as well as space gamma and X-ray observatories, during strong solar flares, are very interesting for the physics of comets as well as for high energy astrophysics. 相似文献
7.
8.
Z. Romeou M. Velli G. Einaudi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
The disposition of energy in the solar corona has always been a problem of great interest. It remains an open question how the low temperature photosphere supports the occurence of solar extreme phenomena. In this work, a turbulent heating mechanism for the solar corona through the framework of reduced magnetohydrodynamics (RMHD) is proposed. Two-dimensional incompressible long time simulations of the average energy disposition have been carried out with the aim to reveal the characteristics of the long time statistical behavior of a two-dimensional cross-section of a coronal loop and the importance of the photospheric time scales in the understanding of the underlying mechanisms. It was found that for a slow, shear type photospheric driving the magnetic field in the loop self-organizes at large scales via an inverse MHD cascade. The system undergoes three distinct evolutionary phases. The initial forcing conditions are quickly “forgotten” giving way to an inverse cascade accompanied with and ending up to electric current dissipation. Scaling laws are being proposed in order to quantify the nonlinearity of the system response which seems to become more impulsive for decreasing resistivity. It is also shown that few, if any, qualitative changes in the above results occur by increasing spatial resolution. 相似文献
9.
About ScienceDirect 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1985,5(12):133-136
A spectrometer for the Halley's Comet Investigation after the VEGA Project is described in the present work. It consists of a telescope and three spectral channels: UV (120 – 290 nm), resolution Δ λ / λ = 170; VIS (280 – 710 nm), resolution Δ λ / λ = 170; IR (950 – 1900 nm), resolution Δ λ / λ = 70.
With the help of two-coordinate scanner, the secondary mirror of the telescope allows spatial scanning of the Comet with a frame 2°×1,5° with 105 different pixels. 相似文献
10.
C. Jacobs S. Poedts 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
The solar wind fills the heliosphere and is the background medium in which coronal mass ejections propagate. A realistic modelling of the solar wind is therefore essential for space weather research and for reliable predictions. Although the solar wind is highly anisotropic, magnetohydrodynamic (MHD) models are able to reproduce the global, average solar wind characteristics rather well. The modern computer power makes it possible to perform full three dimensional (3D) simulations in domains extending beyond the Earth’s orbit, to include observationally driven boundary conditions, and to implement even more realistic physics in the equations. In general, MHD models for the solar wind often make use of additional source and sink terms in order to mimic the observed solar wind parameters and/or they hide the not-explicitly modelled physical processes in a reduced or variable adiabatic index. Even the models that try to take as much as possible physics into account, still need additional source terms and fine tuning of the parameters in order to produce realistic results. In this paper we present a new and simple polytropic model for the solar wind, incorporating data from the ACE spacecraft to set the model parameters. This approach allows to reproduce the different types of solar wind, where the simulated plasma variables are in good correspondence with the observed solar wind plasma near 1 AU. 相似文献
11.
B. Valníček J. Reček 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,4(9):283-285
Two deep-space probes of the Venera type for the encounter with Halley's comet are being prepared in the Intercosmos program. 150 kg of scientific equipment will be onboard each sonde, including two TV cameras and two spectrometers. These instruments need precise orientation during the fly-by of the comet. For this purpose a stabilised platform is being developed in Czechoslovakia which will be installed onboard both probes and will be able to point to the target with precision 5 minutes of arc and maximum angular velocity 1°/second. A system of position detectors and the working program during the start and the fly-by are described. 相似文献
12.
J. Fertig G.H. Schwehm 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,4(9):213-216
In March 1985 ESA's GIOTTO spacecraft will fly by P/Halley's nucleus at a distance of a few hundred kilometres. The near nucleus dust environment the probe will traverse poses a hazard with respect to physical damage as well as to attitude disturbance with the possible loss of ground station contact. To predict S/C survivability and dust impact rates for the experiments, a model of the spatial distribution of the dust in the nucleus' vicinity is required. In the ‘dynamic’ model, the local spatial dust density is derived from exact expressions for the dust particle dynamic motion. The model has been implemented in a software system which allows for fast simulations of a cometary fly-by. 相似文献
13.
Y Ishikawa K Kuriki 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1983,3(9):35-38
The chemistry in a supersonic plasma source flow was studied as a laboratory model for interstellar chemical evolution. It is important to match the similarity parameters for cosmic and laboratory conditions, which connect the temporal and spatial scales of the two cases. The apparatus simulated the conditions in a molecular cloud with respect to molecular-ionic reaction fraction, temperature, and non-equilibrium kinetics. The plasma flow was found to be cold enough, by the radical expansion, to produce polyatomic molecules. From the simple atomic plasma as reactant, cyanopolyyne and unsaturated hydrocarbons were synthesized in the present experiment. These molecules are also inherent in molecular clouds. The reaction mechanism is discussed. 相似文献
14.
L.M. Shulman 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1981,1(8):91-98
No cometary nucleus has ever been observed directly. A model is deduced from ground-based and space data on cometary atmospheres. The main features of the chemical composition of cometary nuclei and the estimation of their sizes are described. The treatment of the process of vaporization of dusty ice shows, contrary to widespread opinion, that the islands on the non-volatile porous mantle are formed, not in perihelion but at large heliocentric distances and on the coldest parts of a nucleus. It is shown that the mantle does not disappear when the comet approaches the Sun, as it is often supposed, but is fluidized. The proposed model can give a number of properties of cometary nuclei but some of them can be established by direct space methods only. Such properties are the masses, the rotational velocities, the homogeneity of the dust-ice mixture, the internal structure, the power of the internal sources of energy. 相似文献
15.
U J Meierhenrich W H Thiemann G M Munoz Caro W A Schutte J M Greenberg 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,27(2):329-334
The Cometary Sampling and Composition Experiment on board of European Space Agency's cornerstone mission ROSETTA is designed to identify organic molecules in cometary matter in situ by a combined pyrolysis gas chromatographic and mass spectrometric technique. Its capillary columns coated with chiral stationary phases received considerable attention, because they are designed for separations of non-complex enantiomers to allow the determination of enantiomeric ratios of cometary chiral organic compounds and consequently to provide information about the origin of molecular parity violation in biomolecules. To get gas chromatographic access to organic compounds on the comet, where macromolecules and complex organic polymers of low volatility are expected to make up the main organic ingredients, the combination of two injection techniques will be applied. The pyrolysis technique performed by heating cometary samples stepwise to defined temperatures in specific ovens resulting in thermochemolysis reactions of polymers and a chemical derivatization technique, in which the reagent dimethylformamide dimethylacetal assists pyrolysis derivatization reactions in producing methyl esters of polar monomers. The combination of the reagent assisted pyrolysis gas chromatographic technique with enantiomer separating chromatography was tested with laboratory-produced simulated cometary matter. 相似文献
16.
D. Summers R.M. Thorne F. Xiao 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2000,25(12):2373-2378
The theory of resonant diffusion is extended to fully relativistic plasmas, and we examine resonant interactions between electrons and electromagnetic R mode (whistler) and L-mode (EMIC) waves. Resonant diffusion curves are constructed for plasma parameters representative of the Earth's storm time magnetosphere, both inside and outside the plasmapause. EMIC waves can resonate with electrons > 1 MeV, but the energies remain nearly constant along the diffusion curves. Storm-time EMIC waves can induce rapid pitch—angle scattering, but the waves are ineffective for stochastic acceleration of elections. Substantial energy change can occur along the diffusion curves for interactions between resonant electrons and whistler—mode waves, especially in regions of low plasma density. Specifically, whistlers can accelerate electrons from energies near 100 keV to above 1 MeV outside the plasmapause. A model is proposed comprising energy diffusion by whistler-mode chorus and pitch-angle scattering by EMIC waves to account for the gradual acceleration of electrons over the region 4 ≤ L ≤ 6 during the recovery phase of a geomagnetic storm. 相似文献
17.
Paul L. Rothwell Michael B. Silevitch Lars P. Block 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1985,5(4):47-50
A unified model is developed for the propagation of the Westward Traveling Surge (WTS) which can explain the diversity in the observed surge characteristics. The direction of the surge motion depends on the presence of polarization charges on the poleward boundary. This is related to the efficiency with which the poleward ionospheric currents are closed off into the magnetosphere by the field-aligned currents. Inclusion of the electron-ion recombination rate modifies the surge propagation velocity and leads to explicit expressions for the conductivity profile. Sufficient precipitation current is required to overcome electron-ion recombination in order for the surge to expand. When the precipitating current is less than this threshold the WTS retreats. Therefore, the model describes the ionospheric response to both the expansion and recovery phases of the magnetic substorm. 相似文献
18.
Piyali Chatterjee Arnab Rai Choudhuri Kristof Petrovay Dibyendu Nandy 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(6):893-896
Active regions on the solar surface are known to possess magnetic helicity, which is predominantly negative in the northern hemisphere and positive in the southern hemisphere. Choudhuri et al. [Choudhuri, A.R. On the connection between mean field dynamo theory and flux tubes. Solar Phys. 215, 31–55, 2003] proposed that the magnetic helicity arises due to the wrapping up of the poloidal field of the convection zone around rising flux tubes which form active regions. Choudhuri [Choudhuri, A.R., Chatterjee, P., Nandy, D. Helicity of solar active regions from a dynamo model. ApJ 615, L57–L60, 2004] used this idea to calculate magnetic helicity from their solar dynamo model. Apart from getting broad agreements with observational data, they also predict that the hemispheric helicity rule may be violated at the beginning of a solar cycle. Chatterjee et al. [Chatterjee, P., Choudhuri, A.R., Petrovay, K. Development of twist in an emerging magnetic flux tube by poloidal field accretion. A&A 449, 781–789, 2006] study the penetration of the wrapped poloidal field into the rising flux tube due to turbulent diffusion using a simple 1-d model. They find that the extent of penetration of the wrapped field will depend on how weak the magnetic field inside the rising flux tube becomes before its emergence. They conclude that more detailed observational data will throw light on the physical conditions of flux tubes just before their emergence to the photosphere. 相似文献
19.
Jelena Kovačević Luka Č. Popović Wolfram Kollatschny 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
Here we present a new method for subtracting the Balmer pseudocontinuum in the UV part of type 1 AGN spectra. We calculate the intensity of the Balmer pseudocontinuum using the prominent Balmer lines in AGN spectra. We apply the model on a sample of 293 type 1 AGNs from SDSS database, and found that our model of Balmer pseudocontinuum + power law continuum very well fits the majority of AGN spectra from the sample, while in ∼15% of AGNs, the model fits reasonable the UV continuum, but a discrepancy between the observed and fitted spectra is noted. Some of the possible reasons for the discrepancy may be a different value for the optical depth in these spectra than used in our model or the influence of the intrinsic reddening. 相似文献
20.
Heiner Körnich Erich Becker 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
The interhemispheric coupling of the middle atmosphere general circulation is characterized by a global anomaly pattern of the zonal-mean temperature. This pattern reflects an anomalous stratospheric and mesospheric residual circulation, in which a weaker (stronger) stratospheric winter circulation is linked to an upward (downward) shift of its upper mesospheric branch reaching from the summer to the winter pole. This phenomenon is robust in observational data and several middle atmosphere general circulation models. In the present study, the recently proposed mechanism of the interhemispheric coupling is unequivocally proven within the framework of a zonally symmetric model that excludes any additional effects due to resolved waves and non-zonally propagating gravity waves. Two simulations are conducted that differ in the strength of the polar vortex. A weaker polar vortex results in a downward shift of the winter mesospheric gravity wave drag. This leads to changes also in the summer upper mesosphere via a feedback solely between gravity wave breaking and the zonal-mean state. The accompanying temperature anomaly reproduces the pattern of the interhemispheric coupling. 相似文献