首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A review is presented of theoretical ideas on the general circulations in the atmospheres of Earth, Mars and Venus and also of results of their theoretical modelling. The role of various factors is discussed in the formation of the circulations. These results are compared with observational data obtained by different means. Data of direct local measurements of meteorological parameters in the atmospheres of Venus and Mars are discussed including those obtained at their surfaces.  相似文献   

2.
An early high-temperature phase of the protosolar accretion disk is implied by at least three different telltales in chondrites and confirmed by peculiarities in the dust grains of comet Halley. The existence this high-temperature phase implies a large accretion rate hence a massive early disk. This clarifies the origin of the Kuiper Belt and of the Oort cloud, those two cometary populations of different symmetry that subsist today. Later, when the dust sedimented and was removed from the thermal equilibrium with the gas phase, a somewhat lower temperature of the disk explains the future planets' densities as well as the location beyond 2.6 AU of the carbonaceous chondrite chemistry. This lower temperature remains however large enough to require an exogenous origin for all carbon and all water now present in the Earth. The later orbital diffusion of planetesimals, which is required by protoplanelary growth, is needed to explain the origin of the terrestrial biosphere (atmosphere, oceans, carbonates and organic compounds) by a veneer mostly made of comets.  相似文献   

3.
A more precise definition of planet is proposed based on the existence of dynamic planetary systems on it. Four basic planetary systems: the intraplanetary, the atmospheric, the magnetospheric and the biospheric one are discussed taking into account interactions of internal and external (cosmic) factors. The formation of distinct phases inside dynamic planetary systems is handled and the dissipative character of these phases is emphasized. The great importance of the formation and role of boundary layers between various phases is shown. Finally the exceptional significance of the action of some boundary layers as barriers is treated in some detail.  相似文献   

4.
5.
We summarize the current status of atmospheric chemistry in the atmospheres of the outer solar system with special emphasis on the question of HCN formation on Jupiter, differences between polar and equatorial compositions on Jupiter, the coloration of the Great Red Spot, and the unique environment of Titan.  相似文献   

6.
For the distant giant planets, Uranus and Neptune, the observation of aurorae may be the best astronomical technique for the detection of planetary magnetic fields, with implications for the structure and composition of their interiors. Aurorae may be detected by emssion of H I Ly α (1216 Å) and by H2 bands near 1600 Å. The latter are important for very faint aurorae because there is essentially no planetary, interplanetary or geocoronal scattering of sunlight to contaminate the signal. For Uranus, present IUE results suggest the presence of a strong aurora at Ly α, but the background and instrument noise levels are very high compared to the apparent signal. At 1600 Å, the IUE instrument noise renders the H2 emission bands on Uranus marginal at best. No aurora has yet been observed on Neptune. For Jupiter, where the existence and general characteristics of the magnetic field are well established, there is disagreement between ground-based infrared and space-borne ultraviolet observations of the location of the aurorae. For all four giant planets, Space Telescope can improve upon the quality of current optical observations. For spectroscopy, the low resolution mode of the High Resolution Spectrograph (HRS) is particularly well suited to auroral observations because of its spectral range, adequate resolution and high sensitivity. For ultraviolet imaging through appropriate filters, the ST spatial resolution, expected to be of order 5 hundredths of an arc second, is also well suited to determine the spatial properties of the aurorae.  相似文献   

7.
In this report the main results of the study of radioactivity of the solar sistem bodies are considered. The radioactivity of the Moon and planets was measured by means of vehicles in situ. The radioactivity of the lunar samples, brought to the Earth was studied with laboratory equipment.  相似文献   

8.
The greenhouse effect of the planetary atmospheres is considered and its evolution as a result of variations in the chemical composition and in gas abundances of the atmospheres as well as in the chemical composition, size distribution and concentration of aerosol components. A computer modelling gave the values of the greenhouse effect of the atmospheres of the Earth, Mars, Venus, Jupiter, and Titan. It is shown that the atmospheric greenhouse effect plays a decisive role in the formation of the planetary climates and that it has substantially changed in the process of the planetary evolution. The greenhouse effect mechanism has always been and still is a major factor of the mean global planetary climate.  相似文献   

9.
A large number of atoms and molecules have strong emission lines in the vacuum ultraviolet. As a result, this spectral region is particularly suited to studying the upper atmospheres of the planets. The observed emissions not only identify the constituents, but also provide information on the solar and magnetospheric excitation processes. Long term monitoring of these emissions, particularly with modest spatial resolution, can elucidate the effects of variations in the solar input as well as changes in magnetospheric conditions. Also, earth orbiting telescopes generally provide better spectral resolution than is available on flyby vehicles. A modest beginning in planetary upper atmospheric studies from earth orbit has been made using orbiting observatories designed primarily for stellar astronomy. As examples of the power of this technique, some recent results will be reviewed with an emphasis on Jupiter and the Io torus. The unusual scheduling requirements and the effects of scattered intense long wavelength radiation put demands on orbiting planetary observatories which are somewhat different from those of stellar astronomy. The implications of these demands for continued advances in this area are discussed.  相似文献   

10.
Taking advantage of the cutoff computations performed for more than a hundred locations from 1955 to 1995 [every 5 years; Shea, M.A., Smart, D.F. Vertical cutoff rigidities for cosmic ray stations since 1955, in: Proceedings of the ICRC 2001, Hamburg, Copernicus Gesellschaft, vol. 10, pp. 4063–4066, 2001], we carefully checked the relationship between the vertical cutoff rigidity and the McIlwain parameter introduced by Shea et al. [Shea, M.A., Smart, D.F., Gentile, L.C. Estimating cosmic ray vertical cutoff rigidities as a function of the McIlwain L-parameter for different epochs of the geomagnetic field. Phys. Earth Planet. Int., 48, 200–205, 1987]. We derived an updated algorithm that can be used outside the polar and equatorial regions, avoiding time consuming computations. Results for the European area and 1990 epoch suggest that the fast evaluation is accurate within 0.1 GV in 26 out of the 30 considered locations.  相似文献   

11.
The intensity of the resonantly scattered Ly-α line of the gian planets depends on the scattering column length of atomic hydrogen above the methane layer and on the incident solar flux. We have obtained measurements of the Ly-α brightness of Jupiter and Saturn on December 19, 1979, with a time difference of 111 minutes, which is only slightly longer than the additional travel time for solar photons scattered at Saturn compared to those from Jupiter. This observational technique eliminates two major uncertainties — the use of different instruments and solar variability — affecting previous determinations of the relative brightness of the planets. The measured ratio of the brightness of the subsolar points is 3.0 ± 0.4 which agrees well with the ratio of the incident solar flux of 3.4. This implies approximately equal scattering column lengths of H on both planets.  相似文献   

12.
大型太阳帆薄膜折叠及展开过程数值分析   总被引:2,自引:0,他引:2  
针对深空太阳帆帆面薄膜折叠方式及太阳帆空间展开过程的优化问题,在叶内折叠、叶外折叠方式的基础上,提出了一种斜叶外折叠方式,并通过建立不同的参数模型,利用ANSYS/LS-DYNA有限元软件对5种折叠模型展开过程进行了力学分析.分析结果表明,新提出的斜叶外折叠方式是较适合空间应用的太阳帆帆面折叠方式.太阳帆在空间展开过程中帆面应力与展开速度、折叠宽度等因素相关,帆面与支撑杆连接的顶点区域是整块帆面应力最大的区域,应重点进行加固.研究结果将为大型太阳帆薄膜材料选择及结构设计提供重要依据.  相似文献   

13.
The Moon spends 20% of its orbit within the terrestrial magnetosphere. During this time it experiences a dynamic plasma environment, including high-speed streams, flux ropes and a flux of heavy ions from ionospheric outflows. 3D multi-fluid simulations of the Moon within the magnetosphere during a substorm shows that a highly variable plasma flow can develop in the vicinity of the Moon due to the passage of a flux rope. The transit of a flux rope past the Moon potentially leads to a plasma wake that is mis-aligned from the optical wake by nearly 30°30°. This will have implications when determining the range of space weathering and surface charging the lunar surface experiences.  相似文献   

14.
Energetic ion composition measurements have now been performed from earth orbiting satellites for more than a decade. As early as 1972 we knew that energetic (keV) ions of terrestrial origin represented a non-negligible component of the storm time ring current. We have now assembled a significant body of knowledge concerning energetic ion composition throughout much of the earth's magnetosphere. We know that terrestrial ions are a common component of the hot equatorial magnetospheric plasma in the ring current and the plasma sheet out to ? 23 RE. During periods of enhanced geomagnetic activity this component may become dominant. There is also clear evidence that the terrestrial component (specifically O+) is strongly dependent on solar cycle. Terrestrial ion source, transport, and acceleration regions have been identified in the polar auroral region, over the polar caps, in the magnetospheric boundary layers, and within the magnetotail lobes and plasma sheet boundary layer. Combining our present knowledge of these various magnetospheric ion populations, it is concluded that the primary terrestrial ion circulation pattern associated with enhanced geomagnetic activity involves direct injection from the auroral ion acceleration region into the plasma sheet boundary layer and central plasma sheet. The observed terrestrial component of the magnetospheric boundary layer and magnetotail lobes are inadequate to provide the required influx. They may, however, contribute significantly to the maintenence of the plasma sheet terrestrial ion population, particularly during periods of reduced geomagnetic activity. It is further concluded, on the basis of the relative energy distributions of H+ and O+ in the plasma sheet, that O+ probably contributes significantly to the ring current population at energies inaccessible to present ion composition instrumentation (? 30 keV).  相似文献   

15.
Amino acid condensation catalyzed by inorganic oxides is a widely recognized way for prebiotic peptide formation. Silica and alumina are widely distributed in the Earth-like planets' crust as minerals of different complexity, and thus are attractive model catalysts for the studies of abiotic peptide synthesis. Experiments performed in other laboratories have shown that this process can be efficient at > 80 degrees C, which is not easy to find on the planetary surface in combination with sufficient concentrations of amino acids and necessary catalysts. In the present work we tested catalytic activity of three forms of alumina (which proved to be an efficient catalyst for this process) in the intermolecular condensation of L-alanine. We expanded the temperature interval down to 55 degrees C and used the simplest permanent heating procedure, without employing fluctuating drying/wetting conditions. The most important finding is that even under the lowest temperature considered (i.e. 55 degrees C), short peptide formation can be detected already after 10-30 days of heating. This fact implies that the abiotic peptide formation might occur in a wide variety of planetary environments, without need for high temperatures, given the presence of amino acid building blocks and alumina-containing minerals.  相似文献   

16.
The comparability of the early environments of Mars and Earth, and the biological evolution which occurred on early earth, motivates serious consideration of the possibility of an early martian biota. Environments which could have contained this early martian life and which may presently contain evidence of this former life include aquatic, ice, soil, and rock habitats. Several analogs of these potential early martian environments, which can provide useful information in searching for extinct life on Mars, are currently available for study on Earth. These terrestrial analogs include the perennially ice-covered lakes and sandstone rocks in the Polar Deserts of Antarctica, surface of snowfields and glaciers, desert soils, geothermal springs, and deep subsurface environments.  相似文献   

17.
The terrestrial infrared radiation pressure effects on the motion of an artificial satellite are investigated. The radiative field is described by a series of spherical harmonics. The equations for the changes of the elements are found and numerical examples for the case of the satellite D-5-B (1975 39 B) are given.  相似文献   

18.
Ten years after the first observation of large-scale wave-like coronal disturbances with the EIT instrument aboard SOHO, the most crucial questions concerning these “EIT waves” are still being debated controversially – what is their actual physical nature, and how are they launched? Possible explanations include MHD waves or shocks, launched by flares or driven by coronal mass ejections (CMEs), as well as models where coronal waves are not actually waves at all, but generated by successive “activation” of magnetic fieldlines in the framework of a CME. Here, we discuss recent observations that might help to discriminate between the different models. We focus on strong coronal wave events that do show chromospheric Moreton wave signatures. It is stressed that multiwavelength observations with high time cadence are particularly important, ideally when limb events with CME observations in the low corona are available. Such observations allow for a detailed comparison of the kinematics of the wave, the CME and the associated type II radio burst. For Moreton-associated coronal waves, we find strong evidence for the wave/shock scenario. Furthermore, we argue that EIT waves are actually generated by more than one physical process, which might explain some of the issues which have made the interpretation of these phenomena so controversial.  相似文献   

19.
A major uncertainty concerning the origins of plasma sheet ions is due to the fact that terrestrial H+ can have similar fluxes and energies as H+ from the solar wind. The situation is especially ambiguous during magnetically quiet conditions (AE < 60γ) when H+ typically contributes more than 90% of the plasma sheet ion population. In this study we examine that problem using a large data set obtained by the ISEE-1 Plasma Composition Experiment. The data suggest that one component of the H+ increases in energy with increasing activity, roughly in proportion to 14 the energy of the He++, whereas the other H+ component has about the same energy at all activity levels, as do the O+ and the He+. If we can assume that the H+ of solar wind origin on the average has about the same energy-per-nucleon as the He++, which is presumably almost entirely from the solar wind, then the data imply that as much as 20–30% of the H+ can be of terrestrial origin even during quiet conditions.  相似文献   

20.
Isotope fractionations in the terrestrial carbon cycle: a brief overview.   总被引:2,自引:0,他引:2  
The bias in favour of isotopically light carbon inherent in biological carbon fixation has brought about an isotopic disproportionation of primordial (mantle-derived) carbon on a global scale, causing an enrichment of 12C in reduced (biogenic) carbon and a concomitant accumulation of the heavy complement (13C) in the residual oxidized (inorganic) carbon pool. As a result, the terrestrial carbon cycle has gone bipartite, comprising an organic branch of isotopically light carbon, and an inorganic branch made up of 13C-enriched carbon (mostly in the form of carbonate). The isotopic disparity between the two principal terrestrial carbon species can be traced back over 3.8 Gyr of Earth history, attesting to a biological modulation of the carbon cycle since the time of formation of the oldest sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号