首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantitative habitability   总被引:1,自引:0,他引:1  
Shock EL  Holland ME 《Astrobiology》2007,7(6):839-851
A framework is proposed for a quantitative approach to studying habitability. Considerations of environmental supply and organismal demand of energy lead to the conclusions that power units are most appropriate and that the units for habitability become watts per organism. Extreme and plush environments are revealed to be on a habitability continuum, and extreme environments can be quantified as those where power supply only barely exceeds demand. Strategies for laboratory and field experiments are outlined that would quantify power supplies, power demands, and habitability. An example involving a comparison of various metabolisms pursued by halophiles is shown to be well on the way to a quantitative habitability analysis.  相似文献   

2.
We review recent work that directly or indirectly addresses the habitability of terrestrial (rocky) planets like the Earth. Habitability has been traditionally defined in terms of an orbital semimajor axis within a range known as the habitable zone, but it is also well known that the habitability of Earth is due to many other astrophysical, geological, and geochemical factors. We focus this review on (1) recent refinements to habitable zone calculations; (2) the formation and orbital stability of terrestrial planets; (3) the tempo and mode of geologic activity (e.g., plate tectonics) on terrestrial planets; (4) the delivery of water to terrestrial planets in the habitable zone; and (5) the acquisition and loss of terrestrial planet carbon and nitrogen, elements that constitute important atmospheric gases responsible for habitable conditions on Earth's surface as well as being the building blocks of the biosphere itself. Finally, we consider recent work on evidence for the earliest habitable environments and the appearance of life itself on our planet. Such evidence provides us with an important, if nominal, calibration point for our search for other habitable worlds.  相似文献   

3.
Hand KP  Carlson RW  Chyba CF 《Astrobiology》2007,7(6):1006-1022
Europa is a prime target for astrobiology. The presence of a global subsurface liquid water ocean and a composition likely to contain a suite of biogenic elements make it a compelling world in the search for a second origin of life. Critical to these factors, however, may be the availability of energy for biological processes on Europa. We have examined the production and availability of oxidants and carbon-containing reductants on Europa to better understand the habitability of the subsurface ocean. Data from the Galileo Near-Infrared Mapping Spectrometer were used to constrain the surface abundance of CO(2) to 0.036% by number relative to water. Laboratory results indicate that radiolytically processed CO(2)-rich ices yield CO and H(2)CO(3); the reductants H(2)CO, CH(3)OH, and CH(4) are at most minor species. We analyzed chemical sources and sinks and concluded that the radiolytically processed surface of Europa could serve to maintain an oxidized ocean even if the surface oxidants (O(2), H(2)O(2), CO(2), SO(2), and SO(4) (2)) are delivered only once every approximately 0.5 Gyr. If delivery periods are comparable to the observed surface age (30-70 Myr), then Europa's ocean could reach O(2) concentrations comparable to those found in terrestrial surface waters, even if approximately 10(9) moles yr(1) of hydrothermally delivered reductants consume most of the oxidant flux. Such an ocean would be energetically hospitable for terrestrial marine macrofauna. The availability of reductants could be the limiting factor for biologically useful chemical energy on Europa.  相似文献   

4.
A study carried out by a team of seven scientists appointed by ESA resulted in the design of a biological laboratory "Biolab" for Columbus APM. The basis for the study were four pre-Phase A studies performed by industry on the assumption that 15 racks would be available to biology and biotechnology in the APM. Due to the constraints newly imposed by the Columbus project, only five racks are now allocated. The tasks of the Biolab scientific team were: (i) to define the scientific objectives of biological research in Columbus; (ii) to review the requirements of the industrial studies; and (iii) to design a multi-purpose facility compatible with the present constraints and satisfying the requirements of the biological investigations considered in the four studies. The Biolab team was able to define a facility capable of accommodating in five racks the following biological objects: small plants (up to 40 cm), insects like drosophila, frog eggs, single cells from animals, bacteria, slime molds and protozoa, as well as human physiology, but restricted to general diagnostic needs. The Biolab facility includes instruments and devices providing the capacity of holding and/or growing the organisms as well as to perform basic experimentation and a minimum essential diagnostic inflight. Within the growth unit the growth chambers/incubators are exchangeable, permitting the use of growth chambers of different sizes. The temperature will be adjustable to the requirements of the objects under investigation, i.e. either 20 or 37 degrees C. Thus a considerable level of flexibility will permit to investigate a broad spectrum of living systems.  相似文献   

5.
The waste management strategy for the future should meet the benefits of humanity safety, respect principals of planet ecology, and compatibility with other habitability systems. For these purpose the waste management technologies, relevant to application of the biodegradation properties of bacteria are of great value. The biological treatment method is based upon the biodegradation of organic substances by various microorganisms. The advantage of the biodegradation waste management in general: it allows to diminish the volume of organic wastes, the biological hazard of the wastes is controlled, and this system may be compatible with the other systems. The objectives of our study were: to evaluate effectiveness of microbial biodegradation of non-pretreated substrate, to construct phneumoautomatic digester for organic wastes biodegradation, and to study microbial characteristics of active sludge samples used as inoculi in biodegradation experiment. The technology of vegetable wastes treatment was elaborated in IBMP and BMSTU. For this purpose the special unit was created where the degradation process is activated by enforced reinvention of portions of elaborated biogas into digester. This technology allows to save energy normally used for electromechanical agitation and to create optimal environment for anaerobic bacteria growth. The investigations were performed on waste simulator, which imitates physical and chemical content of food wastes calculated basing on the data on food wastes of moderate Russian city. The volume of created experimental sample of digester is 40 l. The basic system elements of device are digesters, gas receiver, remover of drops and valve monitoring and thermal control system. In our testing we used natural food wastes to measure basic parameters and time of biodegradation process. The diminution rate of organic gained 76% from initial mass taking part within 9 days of fermentation. The biogas production achieved 46 l per 1 kg of substrate. The microbial studies of biodegradation process revealed following peculiarities: (i) gradual quantitative increasing of Lactobacillus sp. (from 10(3) to 10(5) colony forming units (CFU) per ml), (ii) activation of Clostridia sp. (from 10(2) to 10(4)CFU/ml), (iii) elimination of aerobic conventional pathogens (Enterobacteriaceae sp., Protea sp., staphylococci). The obtained results allow to evaluate effectiveness of proposed technology and to determine the leading role of lactobacilli and clostridia in process of natural wastes biodegradation. Our further investigations shall further be concentrated on creation of artificial inoculi for launching of food wastes biodegradation. These inoculi will include active and adapted strains of clostridia and lactobacilli.  相似文献   

6.
Smith JN  Shock EL 《Astrobiology》2007,7(6):891-904
The common thread of energy release suggests that diverse microbial metabolic processes can be compared through thermodynamic analyses. The resulting energy and power requirements can provide quantitative constraints on habitability. Because previous thermodynamic analyses have focused on the minimum amount of energy needed for the growth of a microorganism or community, the focus of this study is to gain a fuller understanding of the microbial response to highly habitable conditions. This communication summarizes the results of a thermodynamic analysis of the energy and power consumed by microorganisms in experiments that were designed to optimize growth. Reports of microbial growth experiments taken from the literature were combined with speciation and standard state calculations to assess the overall Gibbs energy change during the experiments. Results show that similar numbers of cells (10(9) to 10(10) ) were produced in these experiments regardless of the duration of log phase growth (from <2 to >200 hours) or the total Gibbs energy change [from 1.3-29.6 kJ (mol electrons transferred)(1)]. As a result, optimal growth conditions appear to produce between 10(10) and 10(14) cells per watt of power consumed.  相似文献   

7.
Did life begin on the beach?   总被引:2,自引:0,他引:2  
Water is one of the prerequisites of life. Further requirements are the existence of a system of interacting organic molecules capable of capturing and converting the supply of external energy and elaborating the replicating function that is needed for propagation. None of this would be possible without the existence of some means of concentrating, selecting, and then containing these mutually interacting substances in proximity to one another, i.e., a primitive cell. Starting from this hypothesis we propose a model for the development of life on Earth. Our model embodies the following new features: (1) rapid cycles of catalysis and transport of material, (2) desegregation (separation by tidal action and degradation by catalysis) as well as segregation (by chromatography on tidal beaches), (3) cross-catalysis instead of auto-catalysis, as well as (4) compartmentalization, although the latter idea is of course not new. But our "lipid first" model, in contrast to earlier "peptide first" or "RNA first" models, provides for the compartments needed to act as a cradle for the subsequent development of information- rich molecules like peptides and RNA. If anything, the earliest information-rich molecules were probably membrane-spanning peptides/proteins.  相似文献   

8.
We developed a numerical model to assess the lithoautotrophic habitability of Mars based on metabolic energy, nutrients, water availability, and temperature. Available metabolic energy and nutrient sources were based on a laboratory-produced Mars-analog inorganic chemistry. For this specific reference chemistry, the most efficient lithoautotrophic microorganisms would use Fe(2+) as a primary metabolic electron donor and NO(3)(-) or gaseous O(2) as a terminal electron acceptor. In a closed model system, biomass production was limited by the electron donor Fe(2+) and metabolically required P, and typically amounted to approximately 800 pg of dry biomass/ml ( approximately 8,500 cells/ml). Continued growth requires propagation of microbes to new fecund environments, delivery of fresh pore fluid, or continued reaction with the host material. Within the shallow cryosphere--where oxygen can be accessed by microbes and microbes can be accessed by exploration-lithoautotrophs can function within as little as three monolayers of interfacial water formed either by adsorption from the atmosphere or in regions of ice stability where temperatures are within some tens of degrees of the ice melting point. For the selected reference host material (shergottite analog) and associated inorganic fluid chemistry, complete local reaction of the host material potentially yields a time-integrated biomass of approximately 0.1 mg of dry biomass/g of host material ( approximately 10(9) cells/g). Biomass could also be sustained where solutes can be delivered by advection (cryosuction) or diffusion in interfacial water; however, both of these processes are relatively inefficient. Lithoautotrophs in near-surface thin films of water, therefore, would optimize their metabolism by deriving energy and nutrients locally. Although the selected chemistry and associated model output indicate that lithoautotrophic microbial biomass could accrue within shallow interfacial water on Mars, it is likely that these organisms would spend long periods in maintenance or survival modes, with instantaneous biomass comparable to or less than that observed in extreme environments on Earth.  相似文献   

9.
10.
Venus and Mars likely had liquid water bodies on their surface early in the Solar System history. The surfaces of Venus and Mars are presently not a suitable habitat for life, but reservoirs of liquid water remain in the atmosphere of Venus and the subsurface of Mars, and with it also the possibility of microbial life. Microbial organisms may have adapted to live in these ecological niches by the evolutionary force of directional selection. Missions to our neighboring planets should therefore be planned to explore these potentially life-containing refuges and return samples for analysis. Sample return missions should also include ice samples from Mercury and the Moon, which may contain information about the biogenic material that catalyzed the early evolution of life on Earth (or elsewhere). To obtain such information, science-driven exploration is necessary through varying degrees of mission operation autonomy. A hierarchical mission design is envisioned that includes spaceborne (orbital), atmosphere (airborne), surface (mobile such as rover and stationary such as lander or sensor), and subsurface (e.g., ground-penetrating radar, drilling, etc.) agents working in concert to allow for sufficient mission safety and redundancy, to perform extensive and challenging reconnaissance, and to lead to a thorough search for evidence of life and habitability.  相似文献   

11.
林庆国  王浩明  程诚 《上海航天》2019,36(6):114-120
针对未来空间任务对能源和动力日益提高的需求,提出了基于氢化镁的核电核热双模共质空间核动力技术。该技术以一种储氢密度高、热稳定性较好,能够以常温常压储存的氢化镁作为工质,通过核能加热后氢化镁分解成为核热推进可用的高压氢气和电推进可用的单质镁,并结合高效动态热电转换系统,形成大功率核电源、大功率超高比冲核电推进、高比冲氢气核热推进以及大推力镁核热推进多种工作模式。基于氢化镁的多模共质空间核动力技术解决了低温推进剂、气态工质在空间应用时的存储安全性和存储密度低的问题,其具备的多种工作模式能够针对不同任务需求提供相应的能源或者动力输出,提高核动力飞行器任务能力。  相似文献   

12.
Study of methanogenesis during bioutilization of plant residuals   总被引:1,自引:0,他引:1  
The waste management strategy for the future should meet the benefits of human safety, respect principles of planet ecology, and compatibility with other habitability systems. For these purposes waste management technologies relevant to application of the biodegradation properties of bacteria are of great value. Biological treatment method is based on the biodegradation of organic substances by various microorganisms.The objectives of our study were: to evaluate the effectiveness of microbial biodegradation of vegetable non-edible residual, using artificial inoculum, and to study the peculiarities of biogas, and possibilities of optimizing or reducing the share of methane. The diminution rate of organic gained 76% from initial mass within 9 days of fermentation. The biogas production achieved 46 l/kg of substrate. The microbial studies of biodegradation process revealed the following peculiarities: (i) gradual quantitative increase of Lactobacillus sp. (from 10(3) to 10(5) colony-forming units (CFU) per ml); (ii) activation of Clostridia sp. (from 10(2) to 10(4) CFU/ml); and (iii) elimination of aerobic conventional pathogens (Enterobacteriaceae, Protea sp., Staphylococci). Chromatography analysis revealed the constant presence of carbon dioxide (up to 90.9%). The methane content measures revealed traces 0.1-0.4%. However, when we optimized the methane production in "boiling layer" using methanogenic granules, the amount of methane in biogas reached 80-90%. Based on the results obtained the artificial inoculum was created which was capable of initiating biodegradation of vegetable wastes. This inoculum consisted of active sludge adapted to wastes mixed with excretea of insects which consume plant wastes. Using this inoculum the biodegradation process takes less time than that using active sludge. Regulation of methane concentration from traces to 90% may be achieved by adding methane reactor to the plant digester.  相似文献   

13.
To identify microscopic particles as actual fossil material, it would be useful to have a means of unambiguously recognizing which carbonaceous deposits found in rocks are residues from once-living organisms (i.e., biogenic material). Those residues consist of many different, mostly aromatic (i.e., benzene ring-containing), C-O-H-dominated molecules, and typically are called kerogens. Raman microprobe spectroscopy can be applied to minute samples of ancient kerogens either isolated from their host rocks or in situ in thin section. The Raman spectra generated by monochromatic blue or green laser excitation (e.g., at 488, 514, 532 nm) typically show only generic spectral features indicative of discontinuous arrays of condensed benzene rings (i.e., structures referred to as "disordered carbonaceous material"). Thus, despite the complex chemistry of kerogens and the expected presence of H, O, and N, the Raman spectra typically do not show any evidence of functional groups, such as CH, CH(2), CH(3), CO, and CN. Moreover, the same kind of Raman spectral signature as is obtained from kerogens also is obtained from many other poorly ordered carbonaceous materials that arise through nonbiological processes, such as in situ heating of organic or inorganic compounds (whether or not they are of biological origin), metamorphic mobilization of preexisting carbon compounds, and high-temperature precipitation from hydrothermal solutions. Thus, neither a Raman spectrum, nor a Raman image derived from such spectra, definitively can identify a sample as "kerogen," but only as "disordered carbonaceous material." Clearly, the fact that small, opaque grains consist of disordered carbonaceous material is necessary, but not sufficient, to prove them to be residues of cellular material and, thus, biogenic.  相似文献   

14.
The water content and habitability of terrestrial planets are determined during their final assembly, from perhaps 100 1,000-km "planetary embryos " and a swarm of billions of 1-10-km "planetesimals. " During this process, we assume that water-rich material is accreted by terrestrial planets via impacts of water-rich bodies that originate in the outer asteroid region. We present analysis of water delivery and planetary habitability in five high-resolution simulations containing about 10 times more particles than in previous simulations. These simulations formed 15 terrestrial planets from 0.4 to 2.6 Earth masses, including five planets in the habitable zone. Every planet from each simulation accreted at least the Earth's current water budget; most accreted several times that amount (assuming no impact depletion). Each planet accreted at least five water-rich embryos and planetesimals from the past 2.5 astronomical units; most accreted 10-20 water-rich bodies. We present a new model for water delivery to terrestrial planets in dynamically calm systems, with low-eccentricity or low-mass giant planets-such systems may be very common in the Galaxy. We suggest that water is accreted in comparable amounts from a few planetary embryos in a " hit or miss " way and from millions of planetesimals in a statistically robust process. Variations in water content are likely to be caused by fluctuations in the number of water-rich embryos accreted, as well as from systematic effects, such as planetary mass and location, and giant planet properties.  相似文献   

15.
Mars has undergone three main climatic stages throughout its geological history, beginning with a water-rich epoch, followed by a cold and semi-arid era, and transitioning into present-day arid and very cold desert conditions. These global climatic eras also represent three different stages of planetary habitability: an early, potentially habitable stage when the basic requisites for life as we know it were present (liquid water and energy); an intermediate extreme stage, when liquid solutions became scarce or very challenging for life; and the most recent stage during which conditions on the surface have been largely uninhabitable, except perhaps in some isolated niches. Our understanding of the evolution of Mars is now sufficient to assign specific terrestrial environments to each of these periods. Through the study of Mars terrestrial analogues, we have assessed and constrained the habitability conditions for each of these stages, the geochemistry of the surface, and the likelihood for the preservation of organic and inorganic biosignatures. The study of these analog environments provides important information to better understand past and current mission results as well as to support the design and selection of instruments and the planning for future exploratory missions to Mars.  相似文献   

16.
随着太空探索活动的深入开展,在月球表面建立有人基地成为必然选择。与常规化学能或太阳能相比,月面核电源具有诸多优点,是月球基地的最佳能源选择之一。本文提出了电功率100 kWe的核反应堆电源系统方案,给出了该方案的关键系统参数。针对反应堆模块,展开方案选型、参数优化、常规物理参数分析、初步热工分析和特种临界安全分析等工作。计算结果显示:燃料包壳温度小于使用限值,掉落事故工况下有效增值因数均小于0.98。该设计方案满足各项技术指标和设计准则。  相似文献   

17.
In the time since the Viking life-detection experiments were conducted on Mars, many missions have enhanced our knowledge about the environmental conditions on the Red Planet. However, the martian surface chemistry and the Viking lander results remain puzzling. Nonbiological explanations that favor a strong inorganic oxidant are currently favored (e.g., Mancinelli, 1989; Plumb et al., 1989; Quinn and Zent, 1999; Klein, 1999; Yen et al., 2000), but problems remain regarding the lifetime, source, and abundance of that oxidant to account for the Viking observations (Zent and McKay, 1994). Alternatively, a hypothesis that favors the biological origin of a strong oxidizer has recently been advanced (Houtkooper and Schulze-Makuch, 2007). Here, we report on laboratory experiments that simulate the experiments to be conducted by the Thermal and Evolved Gas Analyzer (TEGA) instrument of the Phoenix lander, which is to descend on Mars in May 2008. Our experiments provide a baseline for an unbiased test for chemical versus biological responses, which can be applied at the time the Phoenix lander transmits its first results from the martian surface.  相似文献   

18.
《Acta Astronautica》2007,60(4-7):571-587
This paper discusses the findings for [Interior] configuration options, habitability and architectural aspects of a first human spacecraft to Mars.In 2003 the space architecture office LIQUIFER was invited by the European Space Agency's (ESA) AURORA Program committee to consult the scientists and engineers from the European Space and Technology Center (ESTEC) and other European industrial communities with developing the first human mission to Mars, which will take place in 2030, regarding the architectural issues of crewed habitats.The task was to develop an interior configuration for a transfer vehicle (TV) to Mars, especially a transfer habitation module (THM) and a surface habitat module (SHM) on Mars. The total travel time Earth—Mars and back for a crew of six amounts to approximately 900 days. After a 200-day-flight three crewmembers will land on Mars in the Mars excursion vehicle (MEV) and will live and work in the SHM for 30 days. For 500 days before the 200-day journey back the spacecraft continues to circle the Martian orbit for further exploration. The entire mission program is based on our present knowledge of technology. The project was compiled during a constant feedback-design process and trans-disciplinary collaboration sessions in the ESA-ESTEC concurrent design facility.Long-term human space flight sets new spatial conditions and requirements to the design concept. The guidelines were developed from relevant numbers and facts of recognized standards, interviews with astronauts/cosmonauts and from analyses about habitability, sociology, psychology and configuration concepts of earlier space stations in combination with the topics of the individual's perception and relation of space.Result of this study is the development of a prototype concept for the THM and SHM with detailed information and complete plans of the interior configuration, including mass calculations. In addition the study contains a detailed explanation of the development of the Design process including all suggested design and configuration options.  相似文献   

19.
The purpose and scope of the Habitability Research Group within the Space Human Factors Office at the NASA/Ames Research Center is described. Both near-term and long-term research objectives in the space human factors program pertaining to the U.S. manned Space Station are introduced. The concept of habitability and its relevancy to the U.S. space program is defined within a historical context. The relationship of habitability research to the optimization of environmental and operational determinants of productivity is discussed. Ongoing habitability research efforts pertaining to living and working on the Space Station are described.  相似文献   

20.
Reproduction is a vital characteristic of life, and sex is the most common reproductive mode in the eukaryotic world. Sex and reproduction are not necessarily linked mechanisms: Sexuality without reproduction exists, while several forms of asexual reproduction are known. The occurrence of sexuality itself is paradoxical, as it is very costly in evolutionary terms. Most of the hypotheses (more than 20) attempting to explain the prevalence of sex fall into two categories: Sex either creates good gene combinations for adaptation to environments or eliminates bad gene combinations counteracting the accumulation of mutations. In spite of this apparent wealth of beneficial effects of sex, asexuality is not rare. Most eukaryotic, asexual lineages are short-lived and can only persist through the presence of sexual roots, but at least two animal groups, bdelloid rotifers and darwinulid ostracods, seem to claim the status of ancient asexuals. Research on (a)sexuality is relevant to astrobiology in a number of ways. First, strong relationships between the origin and persistence of life in extreme environments and reproductive mode are known. Second, the "habitability" of nonterrestrial environments to life greatly depends on reproductive mode. Whereas asexuals can do equally well or better in harsh environments, they fail to adapt fast enough to changing abiotic and biotic environments. Third, it has been shown that plants reproduce mainly asexually in space, and sperm production and motility in some vertebrates are hampered. Both findings indicate that extraterrestrial life under conditions different from Earth might be dominated by asexual reproduction. Finally, for exchange of biological material between planets, the choice of reproductive mode will be important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号