首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To prevent forward contamination and maintain the scientific integrity of future life-detection missions, it is important to characterize and attempt to eliminate terrestrial microorganisms associated with exploratory spacecraft and landing vehicles. Among the organisms isolated from spacecraft-associated surfaces, spores of Bacillus pumilus SAFR-032 exhibited unusually high resistance to decontamination techniques such as UV radiation and peroxide treatment. Subsequently, B. pumilus SAFR-032 was flown to the International Space Station (ISS) and exposed to a variety of space conditions via the European Technology Exposure Facility (EuTEF). After 18 months of exposure in the EXPOSE facility of the European Space Agency (ESA) on EuTEF under dark space conditions, SAFR-032 spores showed 10-40% survivability, whereas a survival rate of 85-100% was observed when these spores were kept aboard the ISS under dark simulated martian atmospheric conditions. In contrast, when UV (>110?nm) was applied on SAFR-032 spores for the same time period and under the same conditions used in EXPOSE, a ~7-log reduction in viability was observed. A parallel experiment was conducted on Earth with identical samples under simulated space conditions. Spores exposed to ground simulations showed less of a reduction in viability when compared with the "real space" exposed spores (~3-log reduction in viability for "UV-Mars," and ~4-log reduction in viability for "UV-Space"). A comparative proteomics analysis indicated that proteins conferring resistant traits (superoxide dismutase) were present in higher concentration in space-exposed spores when compared to controls. Also, the first-generation cells and spores derived from space-exposed samples exhibited elevated UVC resistance when compared with their ground control counterparts. The data generated are important for calculating the probability and mechanisms of microbial survival in space conditions and assessing microbial contaminants as risks for forward contamination and in situ life detection.  相似文献   

2.
In vitro edible muscle protein production system (MPPS): stage 1, fish   总被引:1,自引:0,他引:1  
The working efficiency and state-of-mind of a Space vehicle crew on long-term missions is dependent on the suitability of living conditions including food. Our purpose was to establish the feasibility of an in vitro muscle protein production system (MPPS) for the fabrication of surrogate muscle protein constructs as food products for Space travelers. In the experimental treatments, we cultivated the adult dorsal abdominal skeletal muscle mass of Carassius (Gold fish). An ATCC fish fibroblast cell line was used for tissue engineering investigations. No antibiotics were used during any phase of the research. Our four treatments produced these results: a low contamination rate, self-healing, cell proliferation, a tissue engineered construct of non-homologous co-cultured cells with explants, an increase in tissue size in homologous co-cultures of explants with crude cell mixtures, maintenance of explants in media containing fetal bovine serum substitutes, and harvested explants which resembled fresh fish filets.

We feel that not only have we pointed the way to an innovative, viable means of supplying safe, healthy, nutritious food to Space voyagers on long journeys, but our research also points the way to means of alleviating food supply and safety problems in both the public and private sectors worldwide.  相似文献   


3.
NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far. the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space. exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation methods--shielding and anti-carcinogens.  相似文献   

4.
The Japanese Space Station Program is now under Phase B study by the National Space Development Agency of Japan in participation with the U.S. Space Station Program. A Japanese Space Station participation will be a dedicated pressurized module to be attached to the U.S. Space Station, and is called Japanese Experiment Module (JEM). Astronaut scientists will conduct various experimental operations there. Thus an environment control and life support system is required. Regenerable carbon dioxide removal and collection technique as well as oxygen recovery technique has been studied and investigated for several years. A regenerable carbon dioxide removal subsystem using steam desorbed solid amine and an oxygen recovery subsystem using Sabatier methane cracking have a good possibility for the application to the Japanese Experiment Module. Basic performance characteristics of the carbon dioxide removal and oxygen recovery subsystem are presented according to the results of a fundamental performance test program. The trace contaminant removal process is also investigated and discussed. The solvent recovery plant for the regeneration of various industrial solvents, such as hydrocarbons, alcohols and so on, utilizes the multi-bed solvent adsorption and steam desorption process, which is very similar to the carbon dioxide removal subsystem. Therefore, to develop essential components including adsorption tank (bed), condenser. process controller and energy saving system, the technology obtained from the experience to construct solvent recovery plant can be easily and effectively applicable to the carbon dioxide removal subsystem. The energy saving efficiency is evaluated for blower power reduction, steam reduction and waste heat utilization technique. According to the above background, the entire environment control and life support system for the Japanese Experiment Module including the carbon dioxide removal and oxygen recovery subsystem is evaluated and proposed.  相似文献   

5.
We demonstrated free flow electrophoresis (FFE) of charged cells under microgravity, where gravitational effects are almost eliminated. Separation of a mixture of three bacterial strains (mutants of Salmonella typhimurium LT2) by FFE was conducted on NASA Space Shuttle flight STS-47 (September 1992). The experiment was designed to differentiate three strains having different lipopolysaccharide core structures in the cell membrane. The results were compared to those of ground experiments, in order to examine whether or not FFE in a weightless environment provides distinct advantages. Smooth strain SL1027 and rough strain SL3749 migrated to two separated fractions. The quality (viability) and the yields of the separated samples were sufficient to show the advantage of microgravity. Another rough strain, SL1102, exhibited unexpected electrophoretic behavior, which prevented the complete resolution of the three strains. All the strains were recovered as viable cells after 8 days of flight. The present study suggests that electrophoretic separation of bacterial cells is much more effective under microgravity conditions with relatively good resolution in comparison with the ground operation.  相似文献   

6.
The multi-user facility EXPOSE-E was designed by the European Space Agency to enable astrobiology research in space (low-Earth orbit). On 7 February 2008, EXPOSE-E was carried to the International Space Station (ISS) on the European Technology Exposure Facility (EuTEF) platform in the cargo bay of Space Shuttle STS-122 Atlantis. The facility was installed at the starboard cone of the Columbus module by extravehicular activity, where it remained in space for 1.5 years. EXPOSE-E was returned to Earth with STS-128 Discovery on 12 September 2009 for subsequent sample analysis. EXPOSE-E provided accommodation in three exposure trays for a variety of astrobiological test samples that were exposed to selected space conditions: either to space vacuum, solar electromagnetic radiation at >110?nm and cosmic radiation (trays 1 and 3) or to simulated martian surface conditions (tray 2). Data on UV radiation, cosmic radiation, and temperature were measured every 10?s and downlinked by telemetry. A parallel mission ground reference (MGR) experiment was performed on ground with a parallel set of hardware and samples under simulated space conditions. EXPOSE-E performed a successful 1.5-year mission in space.  相似文献   

7.
Achieving the United States’ Vision for future Space Exploration will necessitate far greater collaboration between humans and automated technology than previous space initiatives. However, the development of methodologies to optimize this collaboration currently lags behind development of the technologies themselves, thus potentially decreasing mission safety, efficiency and probability of success. This paper discusses the human supervisory control (HSC) implications for use in space, and outlines several areas of current automated space technology in which the function allocation between humans and machines/automation is sub-optimal or under dispute, including automated spacecraft landings, Mission Control, and wearable extra-vehicular activity computers. Based on these case studies, we show that a more robust HSC research program will be crucial to achieving the Vision for Space Exploration, especially given the limited resources under which it must be accomplished.  相似文献   

8.
The Special Purpose Dexterous Manipulator (SPDM) is the latest Space Robot developed by the Canadian Space Agency (CSA) and McDonald Detwiller Space and Advanced Robotics (MD Robotics, previously Spar Aerospace) for the International Space Station (ISS). The SPDM has presented its designers with a number of new challenges in performing the Systems Engineering effort required for a complex robotic system:(1) The SPDM initial design was started and attained various levels of maturity for various components under the Space Station Freedom environment, then the Program was stopped and finally restarted under the harsher environment in which the International Space Station is being built.(2) The SPDM is the first space robot to utilize previously developed and space certified robotic components, as well as components with high-commonality to the previously developed ones (electronics, S/W).(3) New requirements levied by the Customer during the negotiations leading to the Program re-start necessitated significant architectural changes versus the SPDM configuration `frozen' when the Program was shut down.(4) The SPDM is the first robotic system of this complexity that is being built under a Firm Fixed Price contract, with the commonality assumptions as one of the cost drivers.This combination of components of various pedigree, coupled with the constraints imposed by an FFP contract have been addressed by the designers through the definition of a novel approach to integrated Systems and Design Engineering.  相似文献   

9.
这篇文章给出了滚转对旋成体的菱形花纹的影响。给出了任意形状旋成体滚转时的菱形花纹歪扭轨迹的计算公式。给出了三种物面形状的物体的n(x)计算公式:(1)锥(2)母线由直线和圆弧组成的尖头旋成体(3)球头锥。给出了参数k=0.025-0.5滚转圆锥的菱形花纹轨迹的空间图。计算了4种来流条件下的滚转尖头旋成体的菱形花纹轨迹。计算了3组模型和不同来流条件下滚转球头锥的菱形花纹轨迹,并对计算结果进行了分析比较  相似文献   

10.
Manned space exploration has created a need to evaluate the effects of spacelike stress on pathogenic and opportunistic microbes astronauts could carry with them to the International Space Station and beyond. Yersinia pestis (YP) causes bubonic, septicemic, and pneumonic plague and is capable of killing infected patients within 3-7 days. In this study, low-shear modeled microgravity (LSMMG), a spacelike stress, was used to physically stress YP; and its effects on proliferation, cold growth, and type III secretion system (T3SS) function were evaluated. YP was grown to saturation in either LSMMG or normal gravity (NG) conditions prior to being used for RAW 246.7 cell infections, HeLa cell infections, and Yop secretion assays. A mutant strain of YP (ΔyopB) that lacks the ability to inject Yersinia outer membrane proteins (Yops) into the host cell was used as a negative control in cell infection experiments. Our experimental results indicate that YP cultivated under LSMMG resulted in reduced YopM production and secretion compared to its NG-grown counterpart. Similarly, NG-grown YP induced more cell rounding in HeLa cells than did the LSMMG-grown YP, which suggests that LSMMG somehow impairs T3SS optimum function. Also, LSMMG-grown YP used to infect cultured RAW 246.7 cells showed a similar pattern of dysfunction in that it proliferated less than did its NG-grown counterpart during an 8-hour infection period. This study suggests that LSMMG can attenuate bacterial virulence contrary to previously published data that have demonstrated LSMMG-induced hypervirulence of other Gram-negative enterics.  相似文献   

11.
《Acta Astronautica》1987,15(3):181-187
QUASAT is a joint ESA/NASA cooperative mission for a free-flying VLBI antenna to be used with the U.S. and European ground arrays. The spaceborn reflector shall have a diameter of 15 m or more and shall operate at three frequencies: 1.6, 5 and 22 GHz. These requirements are very stringent and very difficult to satisfy. The reflector proposed by the European Space Agency as part of the Quasat assessment study shall be presented. Such reflector shall use the Inflatable Space Rigidized technology under development within ESA. Results of the performances envisaged from such design shall be discussed together with the manufacturing and testing problems envisaged for such reflector. Results derived by different reflector design but using the same Inflatable Space Rigidized technology shall also be presented.  相似文献   

12.
This issue of the journal contains papers with the results of studying gravitationally sensitive systems and processes under conditions of microgravity aboard the Mirorbital complex. This is one of the most difficult field of space research whose difficulties are due to both complexity of the object of investigations (since the class of gravitationally sensitive systems and processes is fairly wide, and some of them are not sufficiently studied even under terrestrial conditions) and necessity of using expensive instrumentation and carrying out long-term experiments. However, studying the new mechanical state of weightlessness is inevitable in space exploration. In addition, in some cases it can provide for a new knowledge about the fundamental laws of nature. By virtue of the above reasons, the experiments on microgravity are well presented in the research program onboard the International Space Station.There is a long tradition in this field of research in Russia, and the experience of Russian scientists (a part of which is presented in the papers of this issue) allows them to pass on to the next, better technically equipped, stage of investigations in cooperation with the scientists from other countries.This issue is prepared by an initiative of the subsection Mechanics of zero gravity and gravitationally sensitive systemsof the Coordination Scientific and Technical Council (CSTC) of the Russian Agency for Aviation and Space Flights (Rosaviakosmos).  相似文献   

13.
Outer space is an area of growing economic and technological importance. It is also a developing theatre of military defence and warfare. Against this backdrop, development of a legal framework on the use of force in outer space is of critical urgency. This paper proposes a framework for the development of international law in this area and also assesses the effectiveness of the current state of international law governing the prohibition on the use of force in the context of outer space. It expands upon a proposed role for the United Nations and outlines a proposed enforcement mechanism for the law on the use of force in outer space. This proposed framework rests on a three-tiered system involving an International Tribunal for Outer Space, an International Space Surveillance Agency and an International Space Inspection Agency, co-ordinated through a Secretariat under the auspices of the United Nations Office of Outer Space Affairs. The paper also provides a proposed Protocol on International Peace and Security to the 1967 Outer Space Treaty as a means of establishing the proposed enforcement mechanism. Finally, the paper looks at the complexities involved in developing the law, and moots immediate steps for its development.  相似文献   

14.
15.
The SVET Space Greenhouse (SG)--the first and the only automated plant growth facility onboard the MIR Space Station in the period 1990-2000 was developed on a Russian-Bulgarian Project in the 80s. The aim was to study plant growth under microgravity in order to include plants as a link of future Biological Life Support Systems for the long-term manned space missions. An American developed Gas Exchange Measurement System (GEMS) was added to the existing SVET SG equipment in 1995 to monitor more environmental and physiological parameters. A lot of long-duration plant flight experiments were carried out in the SVET+GEMS. They led to significant results in the Fundamental Gravitational Biology field--second-generation wheat seeds were produced in the conditions of microgravity. The new International Space Station (ISS) will provide a perfect opportunity for conducting full life cycle plant experiments in microgravity, including measurement of more vital plant parameters, during the next 15-20 years. Nowadays plant growth facilities for scientific research based on the SVET SG functional principles are developed for the ISS by different countries (Russia, USA, Italy, Japan, etc.). A new Concept for an advanced SVET-3 Space Greenhouse for the ISS, based on the Bulgarian experience and "know-how" is described. The absolute and differential plant chamber air parameters and some plant physiological parameters are measured and processed in real time. Using the transpiration and photosynthesis measurement data the Control Unit evaluates the plant status and performs adaptive environmental control in order to provide the most favorable conditions for plant growth at every stage of plant development in experiments. A conceptual block-diagram of the SVET-3 SG is presented.  相似文献   

16.
The proposed space experiments BOSS (Biofilm Organisms Surfing Space) and BIOMEX (BIOlogy and Mars experiment) will take place on the space exposure facility EXPOSE-R2 on the International Space Station (ISS), which is set to be launched in 2014. In BOSS the hypothesis to be tested is that microorganisms grown as biofilms, hence embedded in self-produced extracellular polymeric substances, are more tolerant to space and Martian conditions compared to their planktonic counterparts. Various microbial biofilms have been developed including those obtained from the cyanobacterium Chroococcidiopsis isolated from hot and cold deserts. The prime objective of BIOMEX is to evaluate to what extent biomolecules are resistant to, and can maintain their stability under, space and Mars-like conditions; therefore a variety of pigments and cell components are under investigation to establish a biosignature data base; e.g. a Raman spectral library to be used for extraterrestrial life biosignatures. The secondary objective of BIOMEX is to investigate the endurance of extremophiles, focusing on their interactions with Lunar and Martian mineral analogues. Ground-based studies are currently being carried out in the framework of EVTs (Experiment Verification Tests) by exposing selected organisms to space and Martian simulations. Results on a desert strain of Chroococcidiopsis obtained from the first set of EVT, e.g. space vacuum, Mars atmosphere, UVC radiation, temperature cycles and extremes, suggested that dried biofilms exhibited an enhanced survival compared to planktonic lifestyle. Moreover the protection provided by a Martian mineral analogue (S-MRS) to the sub-cellular integrities of Chroococcidiopsis against UVC radiation supports the endurance of this cyanobacterium under extraterrestrial conditions and its relevance in the development of life detection strategies.  相似文献   

17.
空间核反应堆安全分析   总被引:1,自引:1,他引:0       下载免费PDF全文
空间核反应堆是空间能源的重要候选方案,其寿命长、功率大、结构紧凑,但其特有的中子学特性、与传统快堆迥异的设计方案对堆芯安全分析提出了挑战。本文以热管型空间堆为例,首先基于蒙特卡洛方法对空间堆在水淹和沙埋事故工况下,进行了稳态中子学计算分析,结果表明:堆芯在事故工况下不会重返临界。同时,基于瞬态多物理分析程序TMACS,进行了单根控制鼓旋转瞬态过程计算。结果表明:空间堆在热工反馈和热膨胀反馈的多物理耦合下,在特定的瞬态过程中能够保持功率稳定,满足安全要求。  相似文献   

18.
根据我国载人航天工程交会对接技术的特点,文章在推进剂最省、飞行时间固定的交会条件下,提出了追踪飞行器对目标飞行器的调相需求计算方法及两种提升调相能力的技术途径。经仿真验证,这两种技术途径可有效提升追踪飞行器的调相能力。  相似文献   

19.
G. Russo   《Acta Astronautica》2009,65(9-10):1196-1207
The first dropped transonic flight test (DTFT) of the USV Program, performed with Castor, the first of the two spacecrafts developed within the USV Program, was performed on Saturday 24th February 2007, from Tortolì Airport in Sardinia.At 8:30 a.m. the 340 000 m3 stratospheric balloon lifted off from the East coast of Sardinia, bringing the flying test bed (FTB) up to 20.2 km before release within the isolated sea polygon controlled by Italian air force test range in Salto di Quirra (PISQ). The mission ended at 10:30 a.m. with the splash-down of the space vehicle.The flight itself was very good, with a nose-up manoeuvre under transonic conditions, reaching a maximum Mach as high as 1.08. The mission target was completely achieved as some 2 million measures were taken related to flight data, housekeeping, as well as 500 aerodynamic and structural experimental sensors. Unfortunately, the vehicle has been damaged more than expected during splash-down.Many national and international institutions and industries contributed to the mission carrying out, under the supervision and technical guide of CIRA: Italian Space Agency, Italian Air Force, Italian Navy, Italian Civil Aviation Authority, Italian Company for Air Navigation Services, Port Authorities, European Space Agency, Techno System Dev., Vitrociset, Carlo Gavazzi Space, Space Software Italia, Alcatel Alenia Space Italy, ISL-Altran Group.The paper reports the actual status of post-flight data analysis.  相似文献   

20.
《Acta Astronautica》2007,60(4-7):420-425
The study of internal clock systems of scorpions in weightless conditions is the goal of the SCORPI experiment. SCORPI was selected for flight on the International Space Station (ISS) and will be mounted in the European facility BIOLAB, the European Space Agency (ESA) laboratory designed to support biological experiments on micro-organisms, cells, tissue, cultures, small plants and small invertebrates. This paper outlines the main features of a breadboard designed and developed in order to allow the analysis of critical aspects of the experiment. It is a complete tool to simulate the experiment mission on ground and it can be customised, adapted and tuned to the scientific requirements. The paper introduces the SCORPI-T experiment which represents an important precursor for the success of the SCORPI on BIOLAB. The capabilities of the hardware developed show its potential use for future similar experiments in space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号