共查询到20条相似文献,搜索用时 15 毫秒
1.
I G Zolotukhin A A Tikhomirov Yu A Kudenko I V Gribovskaya 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,35(9):1559-1562
Wheat was cultivated on soil-like substrate (SLS) produced by the action of worms and microflora from the inedible biomass of wheat. After the growth of the wheat crop, the inedible biomass was restored in SLS and exposed to decomposition ("biological" combustion) and its mineral compounds were assimilated by plants. Grain was returned to the SLS in the amount equivalent to human solid waste produced by consumption of the grain. Human wastes (urine and feces) after physicochemical processing turned into mineralized form (mineralized urine and mineralized feces) and entered the plants' nutrient solution amounts equal to average daily production. Periodically (once every 60-70 days) the nutrient solution was partly (up to 50%) desalinated by electrodialysis. Due to this NaCl concentration in the nutrient solution was sustained at a fixed level of about 0.26%. The salt concentrate obtained could be used in the human nutrition through NaCl extraction and the residuary elements were returned through the mineralized human liquid wastes into matter turnover. The control wheat cultivation was carried out on peat with use of the Knop nutrient solution. Serial cultivation of several wheat vegetations within 280 days was conducted during the experiment. Grain output varied and yield/harvest depended, in large part, upon the amount of inedible biomass returned to SLS and the speed of its decomposition. After achieving a stationary regime, (when the quantity of wheat inedible biomass utilized during vegetation in SLS is equal to the quantity of biomass introduced into SLS before vegetation) grain harvest in comparison with the control was at most 30% less, and in some cases was comparable to the control harvest values. The investigations carried out on the wheat example demonstrated in principle the possibility of long-term functioning of the LSS photosynthesizing link based on optimizations of biological and physicochemical methods of utilization of the human and plants wastes. The possibilities for the use of these technologies for the creation integrated biological-physicochemical LSS with high closure degree of internal matter turnover are discussed in this paper. 相似文献
2.
G M Lisovsky J I Gitelson M P Shilenko I V Gribovskaya I N Trubachev 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1997,20(10):1801-1804
Model experiments in phytotrons have shown that urea is able to cover 70% of the demand in nitrogen of the conveyer cultivated wheat. At the same time wheat plants can directly utilize human liquid wastes. In this article by human liquid wastes the authors mean human urine only. In a long-term experiment on "man-higher plants" system with two crewmen, plants covered 63 m2, with wheat planted to--39.6 m2. For 103 days, complete human urine (total amount--210.7 l) was supplied into the nutrient solution for wheat. In a month and a half NaCl supply into the nutrient solution stabilized at 0.9-1.65 g/l. This salination had no marked effect on wheat production. The experiment revealed the realistic feasibility to directly involve liquid wastes into the biological turnover of the life support system. The closure of the system, in terms of water, increased by 15.7% and the supply of nutrients for wheat plants into the system was decreased. 相似文献
3.
J L Garland K L Cook M Johnson R Sumner N Fields 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1997,20(10):1931-1937
A study evaluating alternative methods for long term operation of biomass production systems was recently completed at the Kennedy Space Center (KSC). The 418-day study evaluated repeated batch versus mixed-aged production of potato grown on either standard 1/2-strength Hoagland's nutrient solution or solutions including nutrients recycled from inedible plant material. The long term effects of closure and recycling on microbial dynamics were evaluated by monitoring the microbial communities associated with various habitats within the plant growth system (i.e., plant roots, nutrient solution, biofilms within the hydroponic systems, atmosphere, and atmospheric condensate). Plate count methods were used to enumerate and characterize microorganisms. Microscopic staining methods were used to estunate total cell densities. The primary finding was that the density and composition of microbial communities associated with controlled environmental plant growth systems are stable during long term operation. Continuous production resulted in slightly greater stability. Nutrient recycling, despite the addition of soluble organic material from the waste processing system, did not significantly increase microbial density in any of the habitats. 相似文献
4.
T Volk J D Rummel 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1987,7(4):141-148
Design decisions to aid the development of future space-based biological life support systems (BLSS) can be made with simulation models. Here we develop the biochemical stoichiometry for 1) protein, carbohydrate, fat, fiber, and lignin production in the edible and inedible parts of plants; 2) food consumption and production of organic solids in urine, feces, and wash water by the humans; and 3) operation of the waste processor. Flux values for all components are derived for a steady-state system with wheat as the sole food source. The large-scale dynamics of a materially-closed (BLSS) computer model is described in a companion paper. An extension of this methodology can explore multi-food systems and more complex biochemical dynamics while maintaining whole-system closure as a focus. 相似文献
5.
V N Sychev M A Levinskikh Ye Ya Shepelev 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,31(7):1693-1698
Ground-based experiments at RF SSC-IBMP RAS (State Science Center of Russian Federation--Institute of Biomedical Problems of Russian Academia of Science) were aimed at overall studies of a human-unicellular algae-mineralization LSS (life support system) model. The system was 15 m3 in volume. It contained 45 L of algal suspension with a dry substance density of 10-12 g per liter; water volume, including the algal suspension, was 59 L. More sophisticated model systems with partial substitution of unicellular algae with higher plates (crop area of 15 m2) were tested in three experiments from 1.5 to 2 months in duration. The experiments demonstrated that LSS employing the unicellular algae play not only a macrofunction (regeneration of atmosphere and water) but also carry some other functions (purification of atmosphere, formation of microbial cenosis etc.) providing an adequate human environment. It is also important that functional reliability of the algal regenerative subsystem is secured by a huge number of cells able, in the event of death of a part of population, to recover in the shortest possible time the size of population and, hence, functionality of the LSS autotrophic component. For a long period of time a Martian crew will be detached from Earth's biosphere and for this reason LSS of their vehicle must be highly reliable, robust and redundant. One of the approaches to LSS redundancy is installation of two systems with different but equally efficient regeneration technologies, i.e. physical-chemical and biological. At best, these two systems should operate in parallel sharing the function of regeneration of the human environment. In case of failure or a sharp deterioration in performance of one system the other will, by way of redundancy, increase its throughput to make up for the loss. This LSS design will enable simultaneous handling of a number of critical problems including adequate satisfaction of human environmental needs. 相似文献
6.
V N Sychev E Y Shepelev G I Meleshko T S Gurieva M A Levinskikh I G Podolsky O A Dadasheva V V Popov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,27(9):1529-1534
Since 1990, the orbital complex MIR has witnessed several incubator experiments for determination of spaceflight effects on embryogenesis of Japanese quail. First viable chicks who had completed the whole embryological cycle in MIR microgravity hatched out in 1990; it became clear that newborns would not be able to adapt to microgravity unaided. There were 8 successful incubations of chicks in the period from 1990 to 1999. In 1995-1997 the MIR-NASA space science program united Russian and US investigators. As a result, experiments Greenhouse-1 and 2 were performed with an effort to grow super dwarf wheat from seed to seed, and experiment Greenhouse-3 aimed at receiving two successive generations of Brassica rapa. But results of these experiments could not be used for definitive conclusions concerning effects of spaceflight on plant ontogenesis and, therefore, experiments Greenhouse-4 and 5 were staged within the framework of the Russian national space program. The experiments finally yielded wheat seeds. Some of the seeds was left on the space station and, being planted, gave viable seedlings which, in their turn, produced the second crop of space seeds. 相似文献
7.
Y Kitaya A Tani M Kiyota I Aiga 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(11):281-284
In order to obtain basic data for construction of a plant cultivation system incorporating a mushroom cultivation subsystem in the CELSS, plant growth and atmospheric CO2 balance in the system were investigated. The plant growth was promoted by a high level of CO2 which resulted from the respiration of the mushroom mycelium in the system. The atmospheric CO2 concentration inside the system changed significantly due to the slight change in the net photosynthetic rate of plants and/or the respiration rate of the mushroom when the plant cultivation system combined directly with the mushroom cultivation subsystem. 相似文献
8.
Y Kitaya T Shibuya M Yoshida M Kiyota 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,34(7):1466-1469
To obtain basic data for adequate air circulation for promoting plant growth in closed plant production modules in bioregenerative life support systems in space, effects of air velocities ranging from 0.1 to 0.8 m s-1 on photosynthesis in tomato seedlings canopies were investigated under atmospheric CO2 concentrations of 0.4 and 0.8 mmol mol-1. The canopy of tomato seedlings on a plug tray (0.4 x 0.4 m2) was set in a wind-tunnel-type chamber (0.6 x 0.4 x 0.3 m3) installed in a semi-closed-type assimilation chamber (0.9 x 0.5 x 0.4 m3). The net photosynthetic rate in the plant canopy was determined with the differences in CO2 concentrations between the inlet and outlet of the assimilation chamber multiplied by the volumetric air exchange rate of the chamber. Photosynthetic photon flux (PPF) on the plant canopy was kept at 0.25 mmol m-2 s-1, air temperature at 23 degrees C and relative humidity at 55%. The leaf area indices (LAIs) of the plant canopies were 0.6-2.5 and plant heights were 0.05-0.2 m. The net photosynthetic rate of the plant canopy increased with increasing air velocities inside plant canopies and saturated at 0.2 m s-1. The net photosynthetic rate at the air velocity of 0.4 m s-1 was 1.3 times that at 0.1 m s-1 under CO2 concentrations of 0.4 and 0.8 mmol mol-1. The net photosynthetic rate under CO2 concentrations of 0.8 mmol mol-1 was 1.2 times that under 0.4 mmol mol-1 at the air velocity ranging from 0.1 to 0.8 m s-1. The results confirmed the importance of controlling air movement for enhancing the canopy photosynthesis under an elevated CO2 level as well as under a normal CO2 level in the closed plant production modules. 相似文献
9.
A R Kranz K E Gartenbach M Pickert-Andres E Schopper B Baican 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(10):1021-1026
Results presented from recent space flight BION 9 show biological effects of different LET-classes of HZE-particles in different target regions of the seed (meristem and the whole embryo) of Arabidopsis thaliana (L.) Heyhn. HZE-one hit events and non-hit events, i.e. only hit by the low-LET background radiation, and their combined effects on the biological damage endpoint lethality are distinguished. This procedure is opening the opportunity of an approach to comparative studies of the biological effects induced by cosmic HZE-particles of different LET-ranges interacting in the complex cosmic radiation spectrum and with other space flight conditions. 相似文献
10.
Y Kitaya M Kiyota I Aiga K Yabuki K Nitta A Ikeda S Nakayama 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1992,12(5):37-40
In order to collect basic data about CO2 and O2 budgets of a plant cultural system in a CELSS, the variation of the CO2 absorption rates of lettuce and turnips were observed during the growing period, under different conditions. The O2 release rates were deduced from the CO2 absorption rates multiplied by 32/44. As a result, when the light intensity, the photoperiod and the atmospheric CO2 concentration increased, the rates also increased. The effects on the turnips were more significant than those on the lettuce. Turnips at 310 micromoles/m2/s of PPFD, 24 hours of photoperiod and 1100 ppm of CO2 concentration grew most actively in the present experimental conditions. One turnip absorbed 32.3 g CO2 and released 23.5 g O2 for 6 days between 24 days and 30 days after sowing. 相似文献
11.
Alexander Tikhomirov Yurii Kudenko Sergey Trifonov Sofya Ushakova 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
The study addresses the possible ways of involving gaseous products produced by “wet” incineration of human wastes mixed with H2O2 in an alternating electric field in the cycling of the physical model of a bio-technical life support system (BTLSS). The resulting gas mixture contains CO2 and O2, which are easily involved in the cycling in the closed ecosystem, and NH3, which is unacceptable in the atmosphere of the BTLSS. NH3 fixation has been proposed, which is followed by nitrification and involvement of the resulting products in the mass exchange of the closed system. Experiments have been performed to show that plants can be grown in the atmosphere resulting from the closing of the gas loop that includes a physicochemical installation and a growth chamber with plants representing the phototrophic compartment of the BTLSS. The results of the study suggest the conclusion that the proposed method of organic waste oxidation can be a useful tool in creating a physical model of a closed-loop integrated BTLSS. 相似文献
12.
D W Ming D L Henninger 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(11):435-443
Regenerative Life Support Systems (RLSS) will be required to regenerate air, water, and wastes, and to produce food for human consumption during long-duration missions to the Moon and Mars. It may be possible to supplement some of the materials needed for a lunar RLSS from resources on the Moon. Natural materials at the lunar surface may be used for a variety of lunar RLSS needs, including (i) soils or solid-support substrates for plant growth, (ii) sources for extraction of essential, plant-growth nutrients, (iii) substrates for microbial populations in the degradation of wastes, (iv) sources of O2 and H2, which may be used to manufacture water, (v) feed stock materials for the synthesis of useful minerals (e.g., molecular sieves), and (vi) shielding materials surrounding the outpost structure to protect humans, plants, and microorganisms from harmful radiation. Use of indigenous lunar regolith as a terrestrial-like soil for plant growth could offer a solid support substrate, buffering capacity, nutrient source/storage/retention capabilities, and should be relatively easy to maintain. The lunar regolith could, with a suitable microbial population, play a role in waste renovation; much like terrestrial waste application directly on soils. Issues associated with potentially toxic elements, pH, nutrient availability, air and fluid movement parameters, and cation exchange capacity of lunar regolith need to be addressed before lunar materials can be used effectively as soils for plant growth. 相似文献
13.
T I Pisman L A Somova 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,31(7):1751-1756
The study considers an experimental model of the "autotroph-heterotroph" system with a closed atmosphere cycle, in which the heterotrophic link is a mixed yeast population. The autotrophic link is represented by the algae Chlorella vulgaris and the heterotrophic link by the yeasts Candida utilis and Candida guilliermondii. The controls are populations of Chlorella and the same yeasts isolated from the atmosphere. It has been shown that the outcome of competition in the heterotrophic link depends on the strategy of the yeast population towards the substrate and oxygen. The C. utilis population quickly utilizes the substrate as it is an r-strategist and is less sensitive to oxygen deficiency. The C. guilliermondii population consumes low concentrations of the substrate because it is a K-strategist, but it is more sensitive to oxygen deficiency. That is why, in the "autotroph-heterotroph" system with a closed gas cycle, after a considerable amount of the substrate has been consumed, the C. guilliermondii population becomes more competitive that the C. utilis population. In the culture of yeasts, isolated from the atmosphere, the C. utilis population finds itself in more favorable conditions due to oxygen deficiency. The system with a complex heterotrophic component survive longer than a system whose heterotrophic component is represented by only one yeast species. This is explained for by the positive metabolite interaction of yeasts and a more complete utilization of the substrate by a mixed culture of yeasts featuring different strategies towards the substrate. 相似文献
14.
J Gale D T Smernoff B A Macler R D MacElroy 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1989,9(8):43-52
The photosynthesis and productivity of Lemna gibba were studied with a view to its use in Controlled Ecological Life Support Systems (CELSS). Photosynthesis of L. gibba floating on the nutrient solution could be driven by light coming from either above or below. Light from below was about 75% as effective as from above when the stand was sparse, but much less so with dense stands. High rates of photosynthesis (ca. 800 nanomoles CO2 g dry weight (DW)-1 s-1) were measured at 750 micromoles m-2 s-1 PPF and 1500 micromoles mol-1 CO2. This was attained at densities up to 660 g fresh weight (FW) m-2 with young cultures. After a few days growth under these conditions, and at higher densities, the rate of photosynthesis dropped to less than 25% of the initial value. This drop was only partly alleviated by thinning the stand or by introducing a short dark period at high temperature (26 degrees C). Despite the drop in the rate of photosynthesis, maximum yields were obtained in batch cultures grown under continuous light, constant temperature and high [CO2]. Plant protein content was less than reported for field grown Lemna. When the plants were harvested daily, maintaining a stand density of 600 g FW m-2, yields of 18 g DW m-2 d-1 were obtained. The total dry weight of L. gibba included 40% soluble material (sugars and amino acids), 15% protein, 5% starch, 5% ash and 35% cellulose and other polymers. We conclude that a CELSS system could be designed around stacked, alternate layers of transparent Lemna trays and lamps. This would allow for 7 tiers per meter height. Based on present data from single layers, the yield of such a system is calculated to be 135 g DW m-3 d-1 of a 100% edible, protein-rich food. 相似文献
15.
D J Barta T W Tibbitts R J Bula R C Morrow 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1992,12(5):141-149
Light emitting diodes (LEDs) are a promising irradiation source for plant growth in space. Improved semiconductor technology has yielded LED devices fabricated with gallium aluminum arsenide (GaAlAs) chips which have a high efficiency for converting electrical energy to photosynthetically active radiation. Specific GaAlAs LEDs are available that emit radiation with a peak wavelength near the spectral peak of maximum quantum action for photosynthesis. The electrical conversion efficiency of installed systems (micromole s-1 of photosynthetic photons per watt) of high output LEDs can be within 10% of that for high pressure sodium lamps. Output of individual LEDs were found to vary by as much as 55% from the average of the lot. LED ratings, in mcd (luminous intensity per solid angle), were found to be proportional to total photon output only for devices with the same dispersion angle and spectral peak. Increasing current through the LED increased output but also increased temperature with a consequent decrease in electrical conversion efficiency. A photosynthetic photon flux as high as 900 micromoles m-2 s-1 has been produced on surfaces using arrays with LEDs mounted 7.6 mm apart, operating as a current of 50 mA device-1 and at an installed density of approximately 17,200 lamps m-2 of irradiated area. Advantages of LEDs over other electric light sources for use in space systems include long life, minimal mass and volume and being a solid state device. 相似文献
16.
A R Kranz K E Gartenbach M W Zimmermann 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(10):383-388
The role of cosmic ionizing radiation, including heavy ions (HZE-particles) in the induction of mutations at the molecule-, chromosome-, genome- and cell-level is discussed on the basis of different DNA organization in a pro- and eukaryotically compartmented plant system (Arabidopsis thaliana (L.) Heynh.). Data recently obtained on the biological effects of ionizing radiation make it timely to discuss comparatively the evolutionary potentials of space radiation effects in the pro- and eukaryotic genomes (plasmon, plastidom, chondriom, and nucleom) during long duration exposure on space flights. 相似文献
17.
The program system “Potsdam-4” for differential improvement of orbital elements and other parameters
G. Gendt H. Montag 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1981,1(6):43-56
The “Potsdam-4” program system can model satellite orbits with a high accuracy by means of numerical integration. It takes into account gravitational forces of the earth, the moon, the sun, and non-gravitational forces, and realizes an inertial system with a high accuracy. On the basis of this orbit calculation, geodetic and geodynamic parameters can be determined by means of photographic, laser and Doppler observations. 相似文献
18.
W Hanke 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1996,17(6-7):143-150
Gravity interacts with biological systems on different levels of complexity. For the understanding of the action of gravity on such systems at higher degrees of organisation, the investigation of interactions on the membrane and even on the molecular level is crucial. To do such studies, planar lipid bilayers with incorporated transport mediating molecules, i.e. membranes of defined biochemical composition, are close to perfect model systems. In our experiments we have used painted planar lipid bilayers doped with alamethicin. Alamethicin is especially suitable for such studies because of its high sensitivity to applied external forces, which is a result of its special pore forming mechanism. Additional, different to most other transport mediating molecules, a big amount of data from the literature is available about the dependency of alamethicin pores on physical and chemical membrane parameters. We found that the conductance of alamethicin doped bilayers is dependent on the angle of the bilayer with the gravitational vector and that it furthermore can be reduced significantly under hyper gravity conditions in a centrifuge. The effect of gravity here is not an effect on the pore conductance or the membrane-aqueous solution interface, but it is due to an interaction of gravity with the pore forming mechanism, as can be shown by investigating the dependency of the alamethicin pore kinetics on the applied forces. 相似文献
19.
M B Tabacco Q Zhou T G DiGiuseppe 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(11):223-226
Optical chemical sensors have been developed for monitoring several parameters relevant to plant growth systems. These sensors utilize porous polymer and porous glass as the sensing element, and optical fiber input/output lines connected to a custom optoelectronic interface. Present in the sensing element are immobilized colorimetric indicators, which react with the analyte to be sensed. This reaction results in a change in the optical properties of the sensor. These sensors are particularly suited to in-situ monitoring of nutrient solution parameters and atmospheric trace contaminants in life support and plant growth systems. Sensors for monitoring pH, ammonia, and ethylene will be discussed. 相似文献
20.
A Kondyurin B Lauke I Kondyurina E Orba 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,34(7):1585-1591
The large-size frame of space ship and space station can be created with the use of the technology of the polymerization of fiber-filled composites and a liquid reactionable matrix applied in free space or on the other space body when the space ship or space station will be used during a long period of time. For the polymerization of the station frame the fabric impregnated with a long-life polymer matrix (prepreg) is prepared in terrestrial conditions and, after folding, can be shipped in a compact container to orbit and kept folded on board the station. In due time the prepreg is carried out into free space and unfolded. Then a reaction of matrix polymerization starts. After reaction of polymerization the durable frame is ready for exploitation. After that, the frame can be filled out with air, the apparatus and life support systems. The technology can be used for creation of biological frame as element of self regulating ecological system, and for creation of technological frame which can be used for a production of new materials on Earth orbit in microgravity conditions and on other space bodies (Mars, Moon, asteroids) for unique high price mineral extraction. Based on such technology a future space base on Earth orbit with volume of 10(6) m3 and a crew of 100 astronauts is considered. 相似文献