共查询到5条相似文献,搜索用时 0 毫秒
1.
This paper demonstrates and tests a new algorithm for extracting velocity information from a pulse Doppler radar signal. The system is adaptive and performs weil in the presence of target scintillation. This paper also shows a special steady-state version of the adaptive algorithm. lt is computationally attractive and produces near optimal velocity estimates. 相似文献
2.
Doppler properties of the Frank polyphase code and the recently derived P1, P2, P3, and P4 polyphase codes are investigated and compared. An approximate 4 dB cyclic variation of the peak compressed signal is shown to occur as the Doppler frequency increases. The troughs in the peak-signal response occur whenever the total phase shift across the uncompressed pulse, due to Doppler, is an odd multiple of ? radians. It is shown that while the P3 and P4 codes have larger zero-Doppler peak sidelobes than the other codes, the P3 and P4 codes degrade less as the Doppler frequency increases. Also, the effects of amplitude weighting and receiver bandlimiting for both zero and nonzero Doppler are investigated. 相似文献
3.
5.
Bacon B.J. Ostroff A.J. Joshi S.M. 《IEEE transactions on aerospace and electronic systems》2001,37(4):1373-1383
A modified derivation of nonlinear dynamic inversion provides the theoretical underpinnings for a reconfigurable control law for aircraft that have suffered combinations of actuator failures, missing effector surfaces, and aerodynamic changes. The approach makes use of acceleration feedback to extract information pertaining to any aerodynamic change and thus does not require a complete aerodynamic model of the aircraft. The control law does require feedback of effector positions to accommodate actuator dynamics. Both accelerometer and rate gyro failure detection and isolation (FDI) systems are implemented, allowing up to three independent failures for each FDI system as long as they are in different axes. Nonlinear simulation results show that the FDI systems improve the robustness to accelerometer/rate gyro uncertainties. An advanced tailless aircraft model is used to demonstrate the concepts. The simulation includes accelerometer and rate gyro noise and bias, failures due to accelerometers, rate gyros, and actuators, and modeled missing surfaces that cause airplane aerodynamic changes 相似文献