首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A series of spectacular cosmic ray events which included two relativistic solar particle enhancements and three major Forbush decreases were registered by ground-based cosmic ray monitoring stations beginning 4 August, 1972. These were associated with four major proton flare events on the Sun and with large interplanetary magnetic field disturbances and high velocity shock waves. This review attempts to discuss and interpret the high energy cosmic ray phenomena observed during this period in the light of the known behaviour of low energy particulate flux, interplanetary plasma and field observations and other associated solar and terrestrial effects recorded during this period.The first Forbush decrease event FD-1 occurred in the early hours of 4 August, exhibiting very strong north-south and east-west anisotropies. Immediately following the onset of FD-1, the first ground level solar particle enhancement occurred. This event, which had its onset almost 6 h after the flare event on 4 August, had a very steep rigidity spectrum. The major Forbush event of the series which had its onset at 2200 UT on 4 August, exhibited extremely interesting and complex behaviour, the prominent features of which are a precursory increase prior to the onset (PI-1), a large decrease (FD-2), the largest observed to date, followed immediately by an abrupt square wave like enhancement (PI-2). Interplanetary space during this entire period was highly disturbed by the presence of large low energy particulate fluxes and shock waves, at least one of which had a velocity exceeding 2000 km s-1. Large north-south and east-west anisotropies existed throughout the event. Both FD-2 and PI-2 were characterized by almost the same rigidity spectrum, with a power law index of -1.2 ± 0.2, and a predominant anisotropy along the sunward direction. The square wave-like spike PI-2 during the recovery of FD-2 was associated with a similar abrupt change in low energy particle flux in space, as well as an abrupt decrease in the interplanetary magnetic field value from 50 to 10 .Based on the available particle, field and plasma observations, an unified model is presented to explain the Forbush event in terms of a transient modulating region associated with the passage of a narrow magnetic shock front. In this model, the reflection of particles from the approaching shock front account for the precursory increase PI-1. The main Forbush event is caused when the magnetic barrier at the shock front sweeps past the Earth. The square wave increase is due to the enhanced flux contained in the magnetic well just behind the shock front and bounded by magnetic discontinuities, which is explained as due to the transverse diffusion of particles into this region from the interplanetary space which have easy access to this region. In situ plasma, field and low energy particle observations are reviewed to support the model.Also Professor at Physical Research Laboratory, Ahmedabad 380009, India.  相似文献   

2.
The paper reviews the importance of inductive electric fields in explaining different magnetospheric and auroral phenomena during moderately and highly disturbed conditions. Quiet-time particle energization and temporal development of the tail structure during the substorm growth phase are explained by the presence of a large-scale electrostatic field directed from dawn to dusk over the magnetotail. Conservation of the first adiabatic invariant in the neutral sheet with a small value of the gradient in the magnetic field implies that the longitudinal energy increases at each crossing of the neutral sheet. At a certain moment, this may result in a rapid local growth of the current and in an instability that triggers the onset. During the growth phase energy is stored mainly in the magnetic field, since the energy density in the electric field is negligible compared to that of the magnetic field (ratio 1: 107). An analytical model is described in which the characteristic observations of a substorm onset are taken into account. One major feature is that the triggering is confined to a small local time sector. During moderate disturbances, the induction fields in the magnetotail are stronger by at least one order of magnitude than the average cross-tail field. Temporal development of the disturbed area results in X- and O-type neutral lines. Particles near to these neutral lines are energized to over 1 MeV energies within a few seconds, due to an effective combination of linear and betatron acceleration. The rotational property of the induction field promotes energization in a restricted area with dimensions equivalent to a few Earth's radii. The model also predicts the existence of highly localized cable-type field-aligned currents appearing on the eastern and western edges of the expanding auroral bulge. It is shown that the predictions agree with satellite observations and with the data obtained from the two-dimensional instrument networks operated in Northern Europe during the International Magnetospheric Study (IMS, 1976–79).  相似文献   

3.
The possibility to perform in-situ measurements of velocity, magnetic field, density and temperature fluctuations in the Solar Wind has greatly improved our knoweledge of MHD turbulence not only from the point of view of space physics but also from the more general point of view of plasma physics.These fluctuations on the one hand extend over a wide range of frequencies (about 5 decades), a fact which seems to be the signature of turbulent non-linear energy cascade, on the other hand display, mainly in the trailing edge of high speed streams, a number of striking features: (i) a high degree of correlation between magnetic and velocity field fluctuations, (ii) a very low level of fluctuations in mass density and magnetic field intensity, (iii) a considerable anisotropy revealed by minimum variance analysis of the magnetic field correlation tensor. More recently it has been stressed that MHD turbulence in the Solar Wind displays a clear intermittent character.The picture which emerges from the most recent analytical theories and numerical simulations is presented. In particular the observations which give us informations about the dissipation mechanism, which remains yet largely unknown, are discussed.  相似文献   

4.
Astrophysical fluids have very large Reynolds numbers and therefore turbulence is their natural state. Magnetic reconnection is an important process in many astrophysical plasmas, which allows restructuring of magnetic fields and conversion of stored magnetic energy into heat and kinetic energy. Turbulence is known to dramatically change different transport processes and therefore it is not unexpected that turbulence can alter the dynamics of magnetic field lines within the reconnection process. We shall review the interaction between turbulence and reconnection at different scales, showing how a state of turbulent reconnection is natural in astrophysical plasmas, with implications for a range of phenomena across astrophysics. We consider the process of magnetic reconnection that is fast in magnetohydrodynamic (MHD) limit and discuss how turbulence—both externally driven and generated in the reconnecting system—can make reconnection independent on the microphysical properties of plasmas. We will also show how relaxation theory can be used to calculate the energy dissipated in turbulent reconnecting fields. As well as heating the plasma, the energy dissipated by turbulent reconnection may cause acceleration of non-thermal particles, which is briefly discussed here.  相似文献   

5.
The THEMIS ESA Plasma Instrument and In-flight Calibration   总被引:3,自引:0,他引:3  
The THEMIS plasma instrument is designed to measure the ion and electron distribution functions over the energy range from a few eV up to 30 keV for electrons and 25 keV for ions. The instrument consists of a pair of “top hat” electrostatic analyzers with common 180°×6° fields-of-view that sweep out 4π steradians each 3 s spin period. Particles are detected by microchannel plate detectors and binned into six distributions whose energy, angle, and time resolution depend upon instrument mode. On-board moments are calculated, and processing includes corrections for spacecraft potential. This paper focuses on the ground and in-flight calibrations of the 10 sensors on five spacecraft. Cross-calibrations were facilitated by having all the plasma measurements available with the same resolution and format, along with spacecraft potential and magnetic field measurements in the same data set. Lessons learned from this effort should be useful for future multi-satellite missions.  相似文献   

6.
The Plasma Wave Instrument on the Polar spacecraft is designed to provide measurements of plasma waves in the Earth's polar regions over the frequency range from 0.1 Hz to 800 kHz. Three orthogonal electric dipole antennas are used to detect electric fields, two in the spin plane and one aligned along the spacecraft spin axis. A magnetic loop antenna and a triaxial magnetic search coil antenna are used to detect magnetic fields. Signals from these antennas are processed by five receiver systems: a wideband receiver, a high-frequency waveform receiver, a low-frequency waveform receiver, two multichannel analyzers; and a pair of sweep frequency receivers. Compared to previous plasma wave instruments, the Polar plasma wave instrument has several new capabilities. These include (1) an expanded frequency range to improve coverage of both low- and high-frequency wave phenomena, (2) the ability to simultaneously capture signals from six orthogonal electric and magnetic field sensors, and (3) a digital wideband receiver with up to 8-bit resolution and sample rates as high as 249k samples s–1.  相似文献   

7.
Many physical phenomena in space involve energy dissipation which generally leads to charged particle acceleration, often up to very high energies. In the Earth magnetosphere energy accumulation and release occur in the magnetotail, namely in its Current Sheet (CS). The kinetic analysis of non-adiabatic ion trajectories in the CS region with finite but positive normal component of the magnetic field demonstrated that this region is essentially non-uniform in terms of scattering characteristics of ion orbits and contains spatially localized, well-separated sites of enhanced and reduced chaotization. The latter represent sources from which accelerated and energy-collimated ions are ejected into Plasma Sheet Boundary Layer (PSBL) and stream towards the Earth. Numerical simulations performed as part of a Large-Scale Kinetic Model have shown the multiplet ion structure of the PSBL is formed by a set of ion beams (beamlets) localized both in physical and velocity space. This structure of the PSBL is quite different from the one produced by CS acceleration near a magnetic reconnection region in which more energetic ion beams are generated with a broad range of parallel velocities. Multi-point Cluster observations in the magnetotail PSBL not only showed that non-adiabatic ion acceleration occurs on closed magnetic field lines with at least two CS sources operating simultaneously, but also allowed an estimation of their spatial and temporal characteristics. In this paper we discuss and compare the PSBL manifestations of both mechanisms of CS particle acceleration: one based on the peculiar properties of non-adiabatic ion trajectories which operates on closed magnetic field lines and the other representing the well-explored mechanism of particle acceleration during the course of magnetic reconnection. We show that these two mechanisms supplement each other and the first operates mostly during quiescent magnetotail periods.  相似文献   

8.
Carlson  C.W.  McFadden  J.P.  Turin  P.  Curtis  D.W.  Magoncelli  A. 《Space Science Reviews》2001,98(1-2):33-66
The ion and electron plasma experiment on the Fast Auroral Snapshot satellite (FAST) is designed to measure pitch-angle distributions of suprathermal auroral electrons and ions with high sensitivity, wide dynamic range, good energy and angular resolution, and exceptional time resolution. These measurements support the primary scientific goal of the FAST mission to understand the physical processes responsible for auroral particle acceleration and heating, and associated wave-particle interactions. The instrument includes a complement of 8 pairs of `Top Hat' electrostatic analyzer heads with microchannel plate (MCP) electron multipliers and discrete anodes to provide angle resolved measurements. The analyzers are packaged in four instrument stacks, each containing four analyzers. These four stacks are equally spaced around the spacecraft spin plane. Analyzers mounted on opposite sides of the spacecraft operate in pairs such that their individual 180° fields of view combine to give an unobstructed 360° field of view in the spin plane. The earth's magnetic field is within a few degrees of the spin plane during most auroral crossings, so the time resolution for pitch-angle distribution measurements is independent of the spacecraft spin period. Two analyzer pairs serve as electron and ion spectrometers that obtain distributions of 48 energies at 32 angles every 78 ms. Their standard energy ranges are 4 eV to 32 keV for electrons and 3 eV to 24 keV for ions. These sensors also have deflection plates that can track the magnetic field direction within 10° of the spin plane to resolve narrow, magnetic field-aligned beams of electrons and ions. The remaining six analyzer pairs collectively function as an electron spectrograph, resolving distributions with 16 contiguous pitch-angle bins and a selectable trade-off of energy and time resolution. Two examples of possible operating modes are a maximum time resolution mode with 16 angles and 6 energies every 1.63 ms, or a maximum energy resolution mode with 16 angles and 48 energies every 13 ms. The instrument electronics include mcp pulse amplifiers and counters, high voltage supplies, command/data interface circuits, and diagnostic test circuits. All data formatting, commanding, timing and operational control of the plasma analyzer instrument are managed by a central instrument data processing unit (IDPU), which controls all of the FAST science instruments. The IDPU creates slower data modes by averaging the high rate measurements collected on the spacecraft. A flexible combination of burst mode data and slower `survey' data are defined by IDPU software tables that can be revised by command uploads. Initial flight results demonstrate successful achievement of all measurement objectives.  相似文献   

9.
10.
Elphic  R.C.  Means  J.D.  Snare  R.C.  Strangeway  R.J.  Kepko  L.  Ergun  R.E. 《Space Science Reviews》2001,98(1-2):151-168
The FAST magnetic field investigation incorporates a tri-axial fluxgate magnetometer for DC and low-frequency (ULF) magnetic field measurements, and an orthogonal three-axis searchcoil system for measurement of structures and waves corresponding to ELF and VLF frequencies. One searchcoil sensor is sampled up to 2 MHz to capture the magnetic component of auroral kilometric radiation (AKR). Because of budget, weight, power and telemetry considerations, the fluxgate was given a single gain state, with a 16-bit dynamic range of ±65536 nT and 2 nT resolution. With a wide variety of FAST fields instrument telemetry modes, the fluxgate output effective bandwidth is between 0.2 and 25 Hz, depending on the mode. The searchcoil telemetry products include burst waveform capture with 4- and 16-kHz bandwidth, continuous 512-point FFTs of the ELF/VLF band (16 kHz Nyquist) provided by a digital signal processing chip, and swept frequency analysis with a 1-MHz bandwidth. The instruments are operating nominally. Early results have shown that downward auroral field-aligned currents, well-observed over many years on earlier missions, are often carried by accelerated electrons at altitudes above roughly 2000 km in the winter auroral zone. The estimates of current from derivatives of the field data agree with those based on flux from the electrons. Searchcoil observations help constrain the degree to which, for example, ion cyclotron emissions are electrostatic.  相似文献   

11.
赵杰  唐德礼  李平川  许丽  张帆 《推进技术》2020,41(6):1428-1433
为研究圆柱形阳极层霍尔推力器内轮辐效应的不稳定性,利用高速相机和静电探针得到1-2-1模式、1-2-3-1模式和1-2-3-2-1模式的轮辐分裂与合并现象。随着磁感应强度由205Gs增加到225Gs,轮辐个数m由1增加到3。轮辐的分裂与合并模式增多,且轮辐的旋转频率随之由25kHz提高到40kHz~50kHz。轮辐效应的存在是电子密度分布函数的宏观体现,动理论方程中力F的波动引起了轮辐的分裂,随着轮辐个数m的增加,电子分布的低频大幅度波动逐渐演变为小幅度高频率的波动。电子密度分布函数的波动引起的轮辐效应产生了角向分布的电场强度与磁场共同作用,增强了电子轴向漂移运动。  相似文献   

12.
The idea of expedient energy transformation by magnetic reconnection (MR) has generated much enthusiasm in the space plasma community. The early concept of MR, which was envisioned for the solar flare phenomenon in a simple two-dimensional (2D) steady-state situation, is in dire need for extension to encompass three-dimensional (3D) non-steady-state phenomena prevalent in space plasmas in nature like in the magnetosphere. A workshop was organized to address this and related critical issues on MR. The essential outcome of this workshop is summarized in this review. After a brief evaluation on the pros and cons of existing definitions of MR, we propose essentially a working definition that can be used to identify MR in transient and spatially localized phenomena. The word “essentially” reflects a slight diversity in the opinion on how transient and localized 3D MR process might be defined. MR is defined here as a process with the following characteristics: (1) there is a plasma bulk flow across a boundary separating regions with topologically different magnetic field lines if projected on the plane of MR, thereby converting magnetic energy into kinetic particle energy, (2) there can be an out-of-the-plane magnetic field component (the so-called guide field) present such that the reconnected magnetic flux tubes are twisted to form flux ropes, and (3) the region exhibiting non-ideal MHD conditions should be localized to a scale comparable to the ion inertial length in the direction of the plasma inflow velocity. This definition captures the most important 3D aspects and preserves many essential characteristics of the 2D case. It may be considered as the first step in the generalization of the traditional 2D concept. As a demonstration on the utility of this definition, we apply it to identify MR associated with plasma phenomena in the dayside magnetopause and nightside magnetotail of the Earth’s magnetosphere. How MR may be distinguished from other competing mechanisms for these magnetospheric phenomena are then discussed.This revised version was published online in July 2005 with a corrected cover date.  相似文献   

13.
THE CLUSTER MAGNETIC FIELD INVESTIGATION   总被引:6,自引:0,他引:6  
The Cluster mission provides a new opportunity to study plasma processes and structures in the near-Earth plasma environment. Four-point measurements of the magnetic field will enable the analysis of the three dimensional structure and dynamics of a range of phenomena which shape the macroscopic properties of the magnetosphere. Difference measurements of the magnetic field data will be combined to derive a range of parameters, such as the current density vector, wave vectors, and discontinuity normals and curvatures, using classical time series analysis techniques iteratively with physical models and simulation of the phenomena encountered along the Cluster orbit. The control and understanding of error sources which affect the four-point measurements are integral parts of the analysis techniques to be used. The flight instrumentation consists of two, tri-axial fluxgate magnetometers and an on-board data-processing unit on each spacecraft, built using a highly fault-tolerant architecture. High vector sample rates (up to 67 vectors s-1) at high resolution (up to 8 pT) are combined with on-board event detection software and a burst memory to capture the signature of a range of dynamic phenomena. Data-processing plans are designed to ensure rapid dissemination of magnetic-field data to underpin the collaborative analysis of magnetospheric phenomena encountered by Cluster.  相似文献   

14.
Flare phenomena in the solar atmosphere and in the terrestrial magnetosphere exhibit many similarities. The mechanical energy of enhanced photospheric motion is converted and stored in the form of magnetic potential energy in sunspot fields, which is analogous to the case of the growth phase of magnetospheric substorms. The energy release during the explosive phase is initiated by a sudden collapse in the magnetic field topology and the X-type magnetic neutral point is created in the corona. Subsequent electrical discharge takes place in the form of an intense electrojet current flowing in the base of the chromosphere at the altitude where the Cowling conductivity is a maximum. It is suggested that the acceleration of particles by field-aligned electric fields and the Ohmic heating in the chromosphere result in major features of solar flares.This article also appears inSolar Physics 40 (1975) 217–226. By way of exception this paper is reproduced here for the sake of completeness.  相似文献   

15.
This review summarizes both the direct spacecraft observations of non-relativistic solar electrons, and observations of the X-ray and radio emission generated by these particles at the Sun and in the interplanetary medium. These observations bear on three physical processes basic to energetic particle phenomena: (1) the acceleration of particles in tenuous plasmas; (2) the propagation of energetic charged particles in a disordered magnetic field, and (3) the interaction of energetic charged particles with tenuous plasmas to produce electromagnetic radiation. Because these electrons are frequently accelerated and emitted by the Sun, mostly in small and relatively simple flares, it is possible to define a detailed physical picture of these processes.In many small solar flares non-relativistic electrons accelerated during flash phase constitute the bulk of the total flare energy. Thus the basic flare mechanism in these flares essentially converts the available flare energy into fast electrons. Non-relativistic electrons exhibit a wide variety of propagation modes in the interplanetary medium, ranging from diffusive to essentially scatter-free. This variability in the propagation may be explained in terms of the distribution of interplanetary magnetic field fluctuations. Type III solar radio burst emission is generated by these electrons as they travel out to 1 AU and beyond. Recent in situ observations of these electrons at 1 AU, accompanied by simultaneous observations of the low frequency radio emission generated by them at 1 AU provide quantitative information on the plasma processes involved in the generation of type III bursts.  相似文献   

16.
Analytical studies of reconnection have, for the most part, been confined to steady and uniform current sheet geometries. In contrast to these implifications, natural phenomena associated with the presence of current sheets indicate highly non-uniform structure and time-varying behaviour. Examples include the violent outbursts of energy on the Sun known as solar flares, and magnetospheric phenomena such as flux transfer events, plasmoids, and auroral activity. Unlike the theoretical models, reconnection therefore occurs in a highly dynamic and structured plasma environment. In this article we review the mathematical tools and techniques which are available to formulate models capable of describing the effects of reconnection in such situations. We confine attention to variants of the reconnection model first discussed by Petschek in the 1960s, in view of its successful application in predicting and interpreting phenomena in the terrestrial magnetosphere. The analysis of Petschek-type reconnection is based on the equations of ideal magnetohydrodynamics (MHD), which describe the large-scale behaviour of the magnetic field and plasma flow outside the diffusion region, which we determine as a localised part of the current sheet in which reconnection is initiated. The approach we adopt here is to transform the MHD equations into a Lagrangian or so-called 'frozen-in' coordinate system. In this coordinate system, the equation of motion transforms into a set of coupled nonlinear equations, in which the presence of inhomogeneous magnetic fields and/or plasma flows gives rise to a term similar to that which appears in the study of the ordinary string equation in a non-homogeneous medium. As demonstrated here, this approach not only clarifies and highlights the effects of such non-uniformities, it also simplifies the solution of the original set of MHD equations. In particular, this is true for those types of problem in which the total pressure can be considered as a known quantity from the outset. To illustrate the method, we solve several 2D problems involving magnetic field and flow non-uniformities: reconnection in a stagnation-point flow geometry with antiparallel magnetic fields; reconnection in a Y-type magnetic field geometry with and without velocity shear across the current sheet; and reconnection in a force-free magnetic field geometry with field lines of the form xy = const. These case examples, chosen for their tractability, each incorporate some aspects of the field and flow geomtries encountered in solar-terrestrial applications, and they provide a starting point for further analytical as well as numerical studies of reconnection.  相似文献   

17.
An Overview of the Fast Auroral SnapshoT (FAST) Satellite   总被引:3,自引:0,他引:3  
Pfaff  R.  Carlson  C.  Watzin  J.  Everett  D.  Gruner  T. 《Space Science Reviews》2001,98(1-2):1-32
The FAST satellite is a highly sophisticated scientific satellite designed to carry out in situ measurements of acceleration physics and related plasma processes associated with the Earth's aurora. Initiated and conceptualized by scientists at the University of California at Berkeley, this satellite is the second of NASA's Small Explorer Satellite program designed to carry out small, highly focused, scientific investigations. FAST was launched on August 21, 1996 into a high inclination (83°) elliptical orbit with apogee and perigee altitudes of 4175 km and 350 km, respectively. The spacecraft design was tailored to take high-resolution data samples (or `snapshots') only while it crosses the auroral zones, which are latitudinally narrow sectors that encircle the polar regions of the Earth. The scientific instruments include energetic electron and ion electrostatic analyzers, an energetic ion instrument that distinguishes ion mass, and vector DC and wave electric and magnetic field instruments. A state-of-the-art flight computer (or instrument data processing unit) includes programmable processors that trigger the burst data collection when interesting physical phenomena are encountered and stores these data in a 1 Gbit solid-state memory for telemetry to the Earth at later times. The spacecraft incorporates a light, efficient, and highly innovative design, which blends proven sub-system concepts with the overall scientific instrument and mission requirements. The result is a new breed of space physics mission that gathers unprecedented fields and particles observations that are continuous and uninterrupted by spin effects. In this and other ways, the FAST mission represents a dramatic advance over previous auroral satellites. This paper describes the overall FAST mission, including a discussion of the spacecraft design parameters and philosophy, the FAST orbit, instrument and data acquisition systems, and mission operations.  相似文献   

18.
We examine the magnetic field in the martian magnetosheath due to solar wind draping. Mars Global Surveyor provided 3-D vector magnetic field measurements at a large range of altitudes, local times, and solar zenith angles as the spacecraft orbit evolved. We choose orbits with very clean signatures of draping to establish the nominal morphology of the magnetic field lines at local times of near-subsolar and near-terminator. Next, using a compilation of data from Mars Global Surveyor, we determine the average magnetic field morphology in the martian magnetosheath due to the solar wind interaction. The topology of the field is as expected from previous observations and predictions. The magnetic field magnitude peaks at low altitude and noon magnetic local time and decreases away from that point. The magnetic field has an inclination from the local horizontal of 5.6° on average in the dayside magnetosheath and 12.5° on the nightside. The inclination angle is closest to zero at noon magnetic local time and low altitude. It increases both upward and to later local times. The magnetic field in the induced magnetotail flares out from the Mars—Sun direction by 21°. Finally, we compare the observations to gasdynamic model predictions and find that the shocked solar wind flow in the martian magnetosheath can be treated as a gasdynamic flow with the magnetic pileup boundary as the inner boundary to the flow.  相似文献   

19.
The large-scale coronal magnetic fields of the Sun are believed to play an important role in organizing the coronal plasma and channeling the high and low speed solar wind along the open magnetic field lines of the polar coronal holes and the rapidly diverging field lines close to the current sheet regions, as has been observed by the instruments aboard the Ulysses spacecraft from March 1992 to March 1997. We have performed a study of this phenomena within the framework of a semi-empirical model of the coronal expansion and solar wind using Spartan, SOHO, and Ulysses observations during the quiescent phase of the solar cycle. Key to this understanding is the demonstration that the white light coronagraph data can be used to trace out the topology of the coronal magnetic field and then using the Ulysses data to fix the strength of the surface magnetic field of the Sun. As a consequence, it is possible to utilize this semi-empirical model with remote sensing observation of the shape and density of the solar corona and in situ data of magnetic field and mass flux to predict values of the solar wind at all latitudes through out the solar system. We have applied this technique to the observations of Spartan 201-05 on 1–2 November, 1998, SOHO and Ulysses during the rising phase of this solar cycle and speculate on what solar wind velocities Ulysses will observe during its polar passes over the south and the north poles during September of 2000 and 2001. In order to do this the model has been generalized to include multiple streamer belts and co-located current sheets. The model shows some interesting new results. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
Onsager  T.G.  Lockwood  M. 《Space Science Reviews》1997,80(1-2):77-107
Two central issues in magnetospheric research are understanding the mapping of the low-altitude ionosphere to the distant regions of the magnetsphere, and understanding the relationship between the small-scale features detected in the various regions of the ionosphere and the global properties of the magnetosphere. The high-latitude ionosphere, through its magnetic connection to the outer magnetosphere, provides an important view of magnetospheric boundaries and the physical processes occurring there. All physical manifestations of this magnetic connectivity (waves, particle precipitation, etc.), however, have non-zero propagation times during which they are convected by the large-scale magnetospheric electric field, with phenomena undergoing different convection distances depending on their propagation times. Identification of the ionospheric signatures of magnetospheric regions and phenomena, therefore, can be difficult. Considerable progress has recently been made in identifying these convection signatures in data from low- and high-altitude satellites. This work has allowed us to learn much about issues such as: the rates of magnetic reconnection, both at the dayside magnetopause and in the magnetotail; particle transport across the open magnetopause; and particle acceleration at the magnetopause and the magnetotail current sheets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号