首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
采用非等温DSC、TG等研究了SiBCN陶瓷先驱体-聚硅硼氮烷(PBSZ)的固化、陶瓷化行为,运用FTIR、XRD、SEM等手段表征了PBSZ先驱体在不同温度的裂解产物结构和微观形貌。通过Kissinger、Crane方程得到PBSZ先驱体的固化动力学参数:活化能Ea=243.27 kJ/mol,反应级数n=0.958。PBSZ先驱体的质量损失主要发生在500~800℃,聚合物中有机基团逐渐减少,基本完成无机化转变。XRD结果表明,在1500℃以下裂解得到的产物为表面致密的非晶态SiBCN结构,而在1800℃下裂解产物发生了晶化转变,得到的陶瓷产物包含Si C、Si_3N_4、BN(C)等相。  相似文献   

2.
将四-二乙氨基锆(TDEAZ)和乙炔基苯胺封端的聚碳硅氮烷(PCSN)进行液相共混,制备含有Zr、Si元素的新型复相陶瓷先驱体(ZPCSN),并通过FT-IR对其结构进行表征,利用DSC与TGA分别探讨其固化行为及耐热性能;并通过XRD与EDS研究ZPCSN的陶瓷先驱体、耐高温陶瓷。陶瓷化性能结果表明,ZPCSN结构中含有C≡C键,在固化过程中交联形成致密的三维网状结构,赋予ZPCSN优异的耐热性能;在1 600℃氩气氛围中,ZPCSN裂解形成Zr C/Zr N/Si C/Si3N4多元复相陶瓷,保留率为67.92%,这表明ZPCSN具有优异的陶瓷化性能。  相似文献   

3.
采用交联剂对聚碳硅烷(PCS)先驱体进行改性,以改性先驱体配置溶液制备了C/SiC复合材料。在制备过程中,由于改性先驱体较高的陶瓷产率,缩短了复合材料基体致密化周期,气孔率降低到7.2%,密度提升到2.01 g/m~3。在改善试样显微结构的同时,改性先驱体能够明显提升C/SiC复合材料力学性能,弯曲强度提高到459.4 MPa,断裂韧性提升到13.6MPa·m~(1/2),相比单组分PCS先驱体分别提高了51.9%和32.0%。烧蚀性能考核表明,试样的线烧蚀率和质量烧蚀率分别为8.3×10~(-3) mm/s和4.3×10~(-3) g/s,相比单组分PCS制备的试样分别降低了85.7%和73.1%。通过对试样内部显微结构和考核后形貌进行分析,结果表明试样力学和烧蚀性能的提升主要得益于致密化的基体以及基体对纤维很好的保护作用。  相似文献   

4.
液相先驱体转化法制备ZrC粉末及合成机理   总被引:4,自引:0,他引:4  
以氯氧化锆、丙醇、丙三醇和乙酰丙酮等为基本原料合成了锆的有机先驱体溶液,采用液相先驱体转化法在1 500℃制备了ZrC粉末。运用FTIR对锆的先驱体溶液的组成、结构以及形成机理进行了分析,用XRD和EDS分析了粉末的形成机理,用SEM观察了粉末的形貌。结果表明,有机锆的先驱体溶液具有螯和的链状或网状结构;先驱体溶液干燥后的粉末呈蜂窝状结构,在不同热处理温度下获得面心立方的ZrC粉末。经过热力学计算结果表明,C还原锆的氧化物开始生成ZrC的最低温度为1594℃,实验温度低于理论温度,在1500℃时获得面心立方的ZrC材料。  相似文献   

5.
采用液相先驱体,以3D针刺C/C多孔材料为反应基体,制备了C/C-TaC多元复合材料。采用XRD和SEM对C/C-TaC多元复合材料的相组成和显微结构进行了分析。结果表明,采用液相先驱体,以基体炭为炭源,简化了C/C-TaC制备工艺;经900℃预处理后,液相先驱体固化产物转化为纳米级别的Ta2O5,有助于TaC合成反应的进行;提高反应温度有助于减少中间产物影响,至2 000℃可得到晶化度较高的化学计量比TaC。  相似文献   

6.
采用聚碳硅烷(PCS)作为先驱体,通过浸渍裂解法制备C/C-SiC材料,分别经过1 400、1 500、1 600℃高温处理,研究了不同处理温度对SiC基体的微晶形态及C/C-SiC材料力学性能和抗氧化性能的影响。结果表明,3种处理温度下,SiC的晶型主要为β-SiC。温度升高,晶粒尺寸增大,1 500℃以后生长速度减缓;SiC微晶优先沿着(111)晶面生长,(220)和(311)晶面的生长取向逐渐增加。处理温度升高,C/C-SiC材料的弯曲强度和剪切强度不断下降。1 400℃处理后,C/C-SiC材料的断裂方式呈现出非常明显的韧性断裂。C/C-SiC材料在1 500℃静态空气中的氧化失重率随高温处理温度的升高而逐渐增大,氧化程度越来越严重,断面典型区域的氧化形貌由"尖笋状"成为"梭形"。  相似文献   

7.
通过Wurz-Fittig共缩聚反应合成了锆含量可调的聚锆硅烷树脂,作为Si C-Zr C陶瓷单组分前驱体。聚锆硅烷树脂具有聚合物基复合材料的加工工艺性能,具有热固化性(热固化温度110~200℃),在氩气气氛中于1 000~1 400℃高温裂解生成Si C-Zr C复相陶瓷(陶瓷产率60%)。聚锆硅烷树脂适合陶瓷基复合材料的聚合物浸渍裂解致密工艺(PIP)。基于前驱体聚合物的锆基复相陶瓷在空气中具有突出的耐高温氧化性,可望应用于超高音速大气层飞行器的耐高温、耐氧化陶瓷材料。  相似文献   

8.
以前驱体浸渍裂解(PIP)工艺制备的C/C-SiC-ZrC复合材料为研究对象,研究了C/C-SiC的高温裂解温度对C/C-SiC-ZrC复合材料的密度、开孔率、力学性能和抗烧蚀性能的影响。结果表明,C/C-SiC的高温裂解处理导致复合材料失重,开孔率增大,便于后续的前驱体浸渍;随着浸渍裂解周期数增加,三种C/C-SiC-ZrC复合材料最终达到相近的密度和开孔率。不同的高温裂解温度影响C/C-SiC的力学性能,1500℃裂解后的C/C-SiC复合材料具有较好的力学性能,而1600~1700℃裂解后的C/C-SiC复合材料的力学性能有所下降;最终制备C/C-SiC-ZrC复合材料的力学性能较C/C-SiC复合材料均有所提高,界面的改善是材料力学性能提高的主要原因。SiC及ZrC陶瓷基体在高温下形成的ZrO_2-SiO_2玻璃态熔融层起到了抗氧化冲刷的作用,最终C/C-SiC-ZrC复合材料均具有优异的抗烧蚀性能。  相似文献   

9.
采用先驱体浸渍裂解工艺制备了三维针刺C/SiC复合材料,系统地研究了其热物理性能.结果表明:该低成本制造工艺制备的C/SiC复合材料热膨胀系数随温度升高总体上呈增大趋势,但随着温度的升高,热膨胀系数增大程度逐渐减弱,并且z向的热膨胀系数要高于x-y方向,而CVD-SiC涂层的存在会降低其热膨胀性能;C/SiC复合材料比热容、导热率也随着温度的升高呈现逐渐增大的趋势,但增加速率逐渐减小.CVD-SiC涂层的存在会提高C/SiC复合材料的导热性能,有利于C/SiC复合材料产品与外界环境的热能交换,但会使材料的比热容降低.  相似文献   

10.
以甲烷(CH4)为碳源先驱体,以三维针刺碳纤维预制体为沉积基体,研究了化学气相沉积(chemical vapor deposition,CVD)工艺过程中沉积时间、沉积压力以及预制体厚度对热解碳界面层沉积厚度的影响,并在此基础上优化了在碳纤维表面制备合适厚度的热解碳界面层所需的CVD工艺参数。结果表明,针对现有反应腔体,5 mm厚碳纤维预制体试样,采用1 000℃的沉积温度,CH4流速500 ml/min,沉积时间10 h,沉积压力5 kPa,可在预制体内外碳纤维表面沉积得到厚度合适的热解碳界面层;当碳纤维预制体厚度增至10 mm,则沉积时间应延长至15 h,压力维持不变,可沉积得到合适厚度的界面层。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号