首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 165 毫秒
1.
RTM工艺专用环氧树脂体系的研究   总被引:3,自引:0,他引:3  
研究了以E-51改性TDE-85环氧树脂/2-乙基-4-甲基咪唑为基体的RTM用树脂体系,通过对该环氧树脂体系的化学流变特性研究,建立了双阿累尼乌斯流变模型,并采用DSC研究确定该树脂体系的固化工艺。结果表明,模型对树脂粘度的模拟结果与实验结果具有良好的一致性,所建立的粘度模型可有效模拟该树脂体系在不同工艺条件下的粘度行为,准确预报树脂体系的低粘度工艺窗口。浇铸体的力学性能测试结果表明,弯曲强度为82.31 MPa,弯曲模量为3.37 GPa。  相似文献   

2.
采用DSC研究了有机硅固化剂1,3-二氨丙基-1,1,3,3-四甲基二硅氧烷(DSX)与双酚F环氧树脂(BPFER)的固化动力学。BPFER/DSX体系的非等温固化反应曲线和dα/dt-t曲线表明,该反应符合自催化反应模型的基本特征。T-β曲线预测的固化工艺的凝胶温度、固化温度和后固化温度分别为36、87、138℃。采用E变量法分析得该体系的固化反应表观活化能为46.70~50.54 kJ/mol,与Starink、Kissinger、Ozawa、Boswell等方程的验证结果基本一致。采用E常量法求得该体系不同升温速率下的固化反应动力学方程,动力学方程预测值与实验值十分吻合。TG和DTG曲线表明,BPFER/DSX固化物的耐热性优于BPFER/DDM固化物。  相似文献   

3.
介绍了一种中温固化的强度高、力学性能好、隔热性能优良的环氧型固体火箭发动机燃烧室绝热层,讨论了树脂及固化剂类型的选择以及改性环氧树脂体系的反应机理,满足了小型固体火箭发动机燃烧室绝热层的粘接和耐烧蚀性能的要求。  相似文献   

4.
一种新型环氧树脂体系的固化动力学及耐热性研究   总被引:2,自引:1,他引:2  
通过不同升温速率下DSC研究了E51环氧树脂与DIA芳香胺固化体系的固化工艺、固化交联反应动力学参数及树脂体系的耐热性,利用FTIR方法计算了体系的固化度。通过分析确定了树脂的固化工艺,采用Kissinger、Ozawa法计算出树脂表观活化能,其均值为87.02kJ/mol,结合Crane公式求出反应级数为0.93。采用扭辫法测得玻璃化转变温度Tg=178℃。热失重曲线表明,体系的起始分解温度为364℃。  相似文献   

5.
TDE-85环氧树脂固化动力学的DSC和DMA研究   总被引:4,自引:0,他引:4  
根据DSC和DMA测试曲线,分别用Kissinger、Flynn-Wall-Ozawa、Friedman-Reich-Levi模型计算了TDE-85/THPA环氧树脂体系的固化动力学参数。Kissering法所得活化能较低,其他几种计算方法所得活化能比较一致,相对误差在10%之内。将Gaussian分布应用于分峰法,计算了每个反应的动力学参数,模拟结果与DSC曲线具有很好的一致性。双峰表明,固化过程包含2个化学反应,缩水甘油脂基的反应活性比脂环基高。利用外推法确定了固化工艺为100℃/6 h 130℃/4 h 160℃/2 h。  相似文献   

6.
采用DSC法研究了不同升温速率下E51环氧树脂与ABO芳香胺固化体系的固化工艺、固化交联反应动力学参数及树脂体系的热性能。通过分析确定了树脂的基本固化工艺,采用Kissinger、Ozawa方法计算出树脂的表观活化能,其平均值为52.94 kJ/mol,结合Crane公式求出反应级数为1.1,固化反应动力学符合n级反应模型;测得玻璃化转变温度Tg=217℃,热失重曲线表明体系的起始分解温度为361℃。  相似文献   

7.
研究了用于共注射RTM工艺制备承载/隔热/防热一体化复合材料的酚醛树脂和环氧树脂的工艺特性.以苯并噁嗪为防热层的酚醛树脂基体,研究得到了满足共注射工艺条件的环氧树脂体系并确定了共注射的工艺窗口.研究结果表明,以E-44为基体树脂、以GA327改性芳胺为固化剂所构成的环氧树脂体系可作为承载层的基体树脂和苯并噁嗪树脂进行共注射,其共注射的工艺窗口温度为85~90 ℃,在此温度范围内,环氧树脂体系和低粘度保持时间大于20 min,满足了共注射RTM成型一体化复合材料的基本工艺要求.  相似文献   

8.
选取中空玻璃微珠及实心微珠作为填料,考察两种填料对TDE-85/E-51/B-63/70酸酐体系耐烧蚀性、拉伸性能的影响,并通过TG考察了对体系热失重状态。结果表明,加入中空玻璃微珠/环氧体系力学性能及耐烧蚀性能更加优异;在900℃时,中空玻璃微珠/环氧体系热失重最小为55%,纯环氧体系为20%。  相似文献   

9.
研究了细粒度AP及工艺助剂PA含量对丁羟高燃速推进剂低温(-40℃)力学性能的影响,结果显示:大量细粒度AP加入高燃速配方中,一方面加剧了单向拉伸过程中填料(主要是细AP)颗粒附近的应力集中;另一方面降低了填料/粘合剂间的粘结强度,是造成低温力学性能偏低的主要原因.由于工艺助剂PA极性及刚性,使得它易于富集于填料表面,低温下降低了界面层的柔性,物理作用也极大地束缚了填料附近粘合剂网络的分子运动,因此,它在改善工艺性能的同时,对推进剂低温力学性能有不利影响.  相似文献   

10.
601耐湿热环氧树脂体系由AG-80环氧树脂和BNE耐湿热环氧树脂组成。该树脂体系具有固化反应平缓的优点,固化反应温度范围为168℃。在120℃~130℃时,T300/601碳纤维增强耐湿热环氧树脂复合材料预浸料处于最低粘度状态,凝胶时间为190~120min,是理想的加压区间。工艺试验表明,复合材料的预成型工艺,加压时机和固化工艺是保证结构件成型质量的关键,制备得到的T300/601复合材料单向板的空隙率低于0.1%,层问剪切强度达110MPa。601耐湿热环氢树脂体系适合于整体成型共固化碳/环氧结构件的制造,具有良好的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号