首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
复合材料壳体磁场固化技术   总被引:1,自引:0,他引:1  
环氧树脂基复合材料及缠绕壳体在磁场中缠绕和固化的技术为前苏联独有,美国只作了一些验证研究。这种技术使得复合材料加工过程中树脂基体发生物理和化学变化,固化后力学性能显著改善,而且质量更加稳定。实现该技术的设备已在前苏联应用。磁场中固化还适用于树脂涂层和粘接层。  相似文献   

2.
安嘉欣 《中国航天》1995,(3):15-17,21
前苏联航天发展历程(一)编者按近几年来,西方新闻界披露了大量前苏联航天技术发展的内幕,近来又开始对前苏联的航天发展历程进行重新评价。过去,前苏联航天活动的组织机构一直相对保密,人们对前苏联空间计划的指挥系统知之甚少,通常依靠推测和分析,缺乏可靠的事实...  相似文献   

3.
前苏联解体后,俄罗斯整个航天事业,特别是卫星研制工作受到很大打击,与西方的技术差距拉大.但作为实力强大的航天大国,俄不会甘心就这样下去.  相似文献   

4.
据美国陆军战略防御司令部研究,到2000年前后,导弹用固体火箭发机机壳体的增强纤维,将有重要改进.当前美国和前苏联先进的固体发动机,多采用牌号为IM-7X,T-1000、T-40等的碳纤维,它们多由特种PAN纤维、煤基或油基沥青制成.前苏联还采用一种称为Oxalon(苯氮杂二(口恶)唑)的全新型母体制造高强超高模碳纤维.当前的碳纤维性能之不足处是:耐冲击、耐腐蚀和耐化学侵袭等性能较差,成本高,温度交变时易产生疲劳,紧固件周围易出现分层等.  相似文献   

5.
关于树脂基复合材料应用中的一些问题分析   总被引:1,自引:1,他引:1  
文章简述了树脂基复合材料在卫星结构中应用概况,着重对树脂基复合材料应用中的一些问题作了简要分析。  相似文献   

6.
许兴 《中国航天》1992,(6):28-29
据外刊报道,美国战略防御计划局(SDIO)已拟定计划,准备从独联体引进反导弹技术、有关专家以及前苏联生产的弹道导弹。 据熟悉这项计划的西方人士说,该计划要求在50多个领域,特别是在比美国先进的6个领域,获取前苏联研制的技术。该计划还要求直接或间接雇佣1000名以上前苏联科学家和技术人员,每年至少付给每人5000美元。  相似文献   

7.
文章简述了树脂基复合材料在卫星结构中应用概况,着重对树脂基复合材料应用中的一些问题作了简要分析。  相似文献   

8.
耐高温杂化有机硅树脂的合成及复合材料的高温力学性能   总被引:1,自引:0,他引:1  
以一甲基三甲氧基硅烷(MTMS)和正硅酸乙酯(TEOS)为原料,甲醇为溶剂,通过溶胶—凝胶法制备出SiO2杂化有机硅树脂.借助傅立叶变换红外光谱(FT-IR)表征其高温结构变化,热失重分析(TG)研究SiO2杂化有基硅树脂的热稳定性和热降解机理.对TEOS改性甲基硅树脂/石英纤维复合材料在高温下的弯曲强度测试表明,TE...  相似文献   

9.
纤维增强树脂基复合材料的吸湿性和湿变形   总被引:3,自引:0,他引:3  
阐述了纤维增强树脂基复合材料的吸湿与湿变形机理及其影响因素,从环境、材料和工艺3个方面,总结了环境温度、相对湿度、纤维、树脂基体、纤维-基体界面以及铺层方式对复合材料吸湿性与湿变形的影响,并提出了降低纤维增强树脂基复合材料吸湿率与湿变形的途径。  相似文献   

10.
纤维长度及分布对树脂基热固性复合材料模压制品性能有重要影响。通过用不同长度的纤维制备复合材料,并制作试样进行力学性能试验,短切纤维在树脂基热固性复合材料中分布均匀,复合材料性能好,且质量稳定。而长纤维虽有助于提高制品的拉伸强度,但各向异性特点显著,性能数据离散度大,不利于产品整体性能的提高。  相似文献   

11.
以间二乙炔基苯、甲基氢二氯硅烷和间氨基苯乙炔为主要原料,通过格氏试剂法和氨解法,合成了一种耐高温间氨基苯乙炔封端聚(间二乙炔基苯-甲基氢硅烷)树脂(简称APSA树脂)。采用FT-IR、1H-NMR、13C-NMR和多检测GPC/SEC对树脂结构进行表征,利用DSC和TGA研究了树脂的固化行为和耐热性能,探讨了结构中硅元素含量对树脂性能的影响。结果表明,APSA树脂常温下粘度适中,交联固化物具有优异的耐热性能,在N2气氛下Td5(质量损失5%的温度)达634℃,1 000℃下的质量保留率为90.1%。  相似文献   

12.
文章针对卫星常用的结构复合材料,通过一系列试验,研究了纳米粒子对碳纤维增强树脂基复合材料单向板和【0°/±45°/90°】s铺层板导热性能的影响。其中纳米材料选用了纳米二氧化钛和碳纳米管,树脂选用了TDE-85树脂体系。  相似文献   

13.
由间二乙炔基苯和双酚A二炔丙基醚两种端炔单体混合与二甲基二氯硅烷通过格氏工艺合成了含硅芳炔醚共聚树脂,在溶液中和两种含炔基苯并噁嗪(P-apa和P-appe)混合后脱除溶剂而制得了共混树脂,对树脂的流变性能、固化特性、树脂固化物的热稳定性和力学性能进行了研究。结果表明,共混树脂黏温特性得以改善,具有更宽的加工窗口,可达到140℃。苯并噁嗪开环固化和端炔基的固化反应是同时进行的,共混树脂固化物具有好的耐热性能,氮气中5%热失重温度(Td5)超过540℃,800℃下的残留率(Yr800℃)也超过了84%,且在450℃以下未出现玻璃化转变。添加质量分数30%P-appe的共混树脂浇铸体冲击强度和弯曲强度提高至2.97 kJ/m2和32 MPa,分别提升了36.9%和23.5%;添加质量分数30%P-apa的共混树脂浇铸体冲击强度也提升至2.71 kJ/m2,增加了24.8%。  相似文献   

14.
铝锂合金的焊接工艺   总被引:1,自引:0,他引:1  
铝锂合金的出现是自30年代以来在铝合金材料领域里的重大变革,它在航空航天工业中作为结构材料有无比的优越性和广阔的前景,但是要使这种材料成功地应用到航空航天工业中并充分发挥它的潜力,焊接工艺是关键的工艺,解决了焊接技术问题,材料的大量应用问题才可相继解决。文中以对比的方法,介绍前苏联和以美国为代表的西方国家的铝锂合金发展概况及共性能,重点介绍前苏联的01420和美国的2090两种铝锂合金的焊接工艺和焊接接头性能以及如何减少和消除焊缝气孔缺陷的工艺技术措施。  相似文献   

15.
新型BMⅠ/多烯丙基化合物F树脂体系,具有优异的耐高温性能、力学性能以及良好的工艺性和低成本性。通过对该树脂基复合材料的制备工艺及力学性能研究,分析了BMⅠ/多烯丙基化合物F树脂体系复合材料低成本制造的可能性。  相似文献   

16.
针对高模量、高热导率中间相沥青基碳纤维复合材料界面性能弱等瓶颈问题,深入研究该类纤维表面特性及其与树脂的界面粘结性能。选取3种典型中间相沥青基碳纤维,测试分析其微观形貌、表面能和极性与色散分量、表面元素种类与含量,利用微脱黏方法表征中间相沥青基碳纤维与环氧树脂的界面剪切强度。研究结果表明:中间相沥青基碳纤维表面均存在明显沟槽结构,但其呈化学惰性,选用的中间相沥青基碳纤维与环氧树脂界面剪切强度最高约为50 MPa,明显低于聚丙烯腈基碳纤维;纤维表面能越高,尤其是极性分量越高,中间相沥青基碳纤维/环氧树脂界面剪切强度越大,这些结果揭示了中间相沥青基碳纤维与树脂基体界面性能主控因素。  相似文献   

17.
复合材料机械加工是复合材料制品生产工艺的一个重要环节,介绍了复合材料机械加工的常规和非常规两类加工方法在树脂基、陶瓷基复合材料机械加工时的特点和加工时应注意的事项。  相似文献   

18.
通过Wurz-Fittig共缩聚反应合成了锆含量可调的聚锆硅烷树脂,作为Si C-Zr C陶瓷单组分前驱体。聚锆硅烷树脂具有聚合物基复合材料的加工工艺性能,具有热固化性(热固化温度110~200℃),在氩气气氛中于1 000~1 400℃高温裂解生成Si C-Zr C复相陶瓷(陶瓷产率60%)。聚锆硅烷树脂适合陶瓷基复合材料的聚合物浸渍裂解致密工艺(PIP)。基于前驱体聚合物的锆基复相陶瓷在空气中具有突出的耐高温氧化性,可望应用于超高音速大气层飞行器的耐高温、耐氧化陶瓷材料。  相似文献   

19.
张军  李伟  方国东  梁军  孟松鹤 《宇航学报》2020,41(6):739-748
针对树脂基防隔热复合材料高温条件下复杂的热/力/化学的多场耦合问题,从高温性能预报模型、高温响应求解方法和高温试验测试三方面进行了论述。详细介绍了研究树脂基防隔热复合材料高温响应相关的热解动力学模型、材料高温热物性及力学性能演化表征方法、材料高温响应模型的求解方法以及表征材料高温响应的多种高温试验测试手段。对上述研究方法的发展进行了评述,并对未来发展趋势进行了展望。本文有助于相关研究人员认识和发展树脂基复合材料在高温下的热力响应分析方法,也可供工程技术人员对这类材料的防隔热性能和高温承载性能进行研究。  相似文献   

20.
纤维复合材料中孔隙的起因评述   总被引:4,自引:0,他引:4  
文中介绍美国麦道宇航公司对纤维复合材料中产生孔隙原因的评述。热固性树脂基复合材料固化成型过程中产生孔隙的最简单机理是与挥发物的蒸气压相关联的。如果树脂凝胶前挥发物的蒸气压力超过树脂流体的压力,则会在层板中生成孔隙,而且孔会长大。介绍了影响树脂流体压力的试验结果,并讨论了诸如树脂体系化学组成,树脂体系的配置和预浸操作、铺层、加压以及固化工艺等因素对孔隙形成、长大的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号