首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cool giant and supergiant stars generally present low velocity winds with high mass-loss rates. Several models have been proposed to explain the acceleration process of these winds. Although dust is known to be present in these objects, the radiation pressure on these particles is uneffective in reproducing the observed physical parameters of the wind. The most promising acceleration mechanism cited in the literature is the transference of momentum and energy from Alfvén waves to the gas. Usually, these models consider the wind to be isothermal. We present a stellar wind model in which the Alfvén waves are used as the main acceleration mechanism, and determine the temperature profile by solving the energy equation taking into account both the radiative losses and the wave heating. We also determine, self-consistently, the magnetic field geometry as the result of the competition between the magnetic field and the thermal pressure gradient. As the main result, we show that the magnetic geometry presents a super-radial index in the region where the gas pressure is increasing. However, this super-radial index is greater than that observed for the solar corona.  相似文献   

2.
Massive stars are crucial building blocks of galaxies and the universe, as production sites of heavy elements and as stirring agents and energy providers through stellar winds and supernovae. The field of magnetic massive stars has seen tremendous progress in recent years. Different perspectives—ranging from direct field measurements over dynamo theory and stellar evolution to colliding winds and the stellar environment—fruitfully combine into a most interesting and still evolving overall picture, which we attempt to review here. Zeeman signatures leave no doubt that at least some O- and early B-type stars have a surface magnetic field. Indirect evidence, especially non-thermal radio emission from colliding winds, suggests many more. The emerging picture for massive stars shows similarities with results from intermediate mass stars, for which much more data are available. Observations are often compatible with a dipole or low order multi-pole field of about 1 kG (O-stars) or 300 G to 30?kG (Ap/Bp stars). Weak and unordered fields have been detected in the O-star ζ Ori A and in Vega, the first normal A-type star with a magnetic field. Theory offers essentially two explanations for the origin of the observed surface fields: fossil fields, particularly for strong and ordered fields, or different dynamo mechanisms, preferentially for less ordered fields. Numerical simulations yield the first concrete stable (fossil) field configuration, but give contradictory results as to whether dynamo action in the radiative envelope of massive main sequence stars is possible. Internal magnetic fields, which may not even show up at the stellar surface, affect stellar evolution as they lead to a more uniform rotation, with more slowly rotating cores and faster surface rotation. Surface metallicities may become enhanced, thus affecting the mass-loss rates.  相似文献   

3.
We review the mechanisms which are thought to provide steady heating of chromospheres and coronae. It appears now fairly well established that nonmagnetic chromospheric regions of latetype stars are heated by shock dissipation of acoustic waves which are generated in the stellar surface convection zones. In the case of late-type giants there is additional heating by shocks from pulsational waves. For slowly rotating stars, which have weak or no magnetic fields, these two are the dominant chromospheric heating mechanisms.Except for F-stars, the chromospheric heating of rapidly rotating late-type stars is dominated by magnetic heating either through MHD wave dissipation (AC mechanisms) or through magnetic field dissipation (DC mechanisms). The MHD wave and magnetic field energy comes from fluid motions in the stellar convection zones. Waves are also generated by reconnective events at chromospheric and coronal heights. The high-frequency part of the motion spectrum leads to AC heating, the low frequency part to DC heating. The coronae are almost exclusively heated by magnetic mechanisms. It is not possible to say at the moment whether AC or DC mechanisms are dominant, although presently the DC mechanisms (e.g., nanoflares) appear to be the more important. Only a more detailed study of the formation of and the dissipation in small-scale structures can answer this question.The X-ray emission in early-type stars shows the presence of coronal structures which are very different from those in late-type stars. This emission apparently arises in the hot post-shock regions of gas blobs which are accelerated in the stellar wind by the intense radiation field of these stars.  相似文献   

4.
With the improvement of the accuracy of the inertial system, the influence of the disturbing gravity field on the accuracy of long-range rocket has become increasingly prominent. However, in actual engineering, there are problems of low accuracy and being time-consuming for disturbing gravity field compensation. In view of this, this paper proposes a set of online comprehensive solutions combining disturbing gravity reconstruction and stellar correction. According to the pre-launch binding param...  相似文献   

5.
The long-wave perturbation method is employed to investigate the nonlinear hydromagnetic stability of a thin electrically-conductive pseudoplastic liquid film flowing down the surface of a vertical wall in a magnetic field. The validity of the numerical results is improved through the introduction of the flow index and the magnetic force into the governing equation. In contrast to most previous studies presented in the literature, the solution scheme employed in this study is based on a numerical approximation approach rather than an analytical method. The solution procedure commences by employing the normal mode approach to analyze the linear stability of the film flow. The multiple-scales method is then applied to obtain the weak nonlinear dynamics of the thin-film system for stability analysis. The modeling results reveal that the pseudoplastic film flow system may exhibit both subcritical instability and supercritical stability states. The flow stability can be enhanced by increasing the intensity of the magnetic field and the flow index, respectively. In general, the optimum conditions can be found through the use of a system to alter stability of the film flow by controlling the applied magnetic field.  相似文献   

6.
高压涡轮全环非定常流动数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
为了进一步准确地掌握涡轮内部复杂流动特征,采用全环非定常数值模拟方法研究了某型高压涡轮内部非定常流动,重点分析了上游导叶尾迹和激波在动叶流动中的非定常作用机制,探讨了引起动叶通道内及叶片表面压力分布周期性变化的非定常扰动。数值结果表明:与尾迹作用相比,由导叶激波引起的非定常效应更为明显,尾迹引起的非定常扰动在动叶0.5倍轴向弦长位置下游较为突出。在动叶流场中及叶片表面上的静压变化显示,在动叶通道内还存在低频扰动,对局部流场的非定常扰动明显。最后指出,在非定常计算时采用区域缩放法对流场中非定常扰动的预测存在一定误差。  相似文献   

7.
We review the mechanisms which have been proposed for the heating of stellar chromospheres and coronae. These consist of heating by acoustic waves, by slow and fast mhd waves, by body and surface Alfvén waves, by current or magnetic field dissipation, by microflare heating and by heating due to bulk flows and magnetic flux emergence. Some relevant observational evidence has also been discussed.  相似文献   

8.
The interaction of a stellar magnetosphere with a thin accretion disk is considered. Specifically, I consider a model in which (1) the accretion disk is magnetically linked to the star over a large range of radii and (2) the magnetic diffusivity of the disk is sufficiently small that there is little slippage of field lines within the disk on the rotation time scale. In this case the magnetic energy built up as a result of differential rotation between the star and the disk is released in quasi-periodic reconnection events occuring in the magnetosphere (Aly and Kuijpers 1990). The radial transport of magnetic flux in such an accretion disk is considered. It is show that the magnetic flux distribution is stationary on the accretion time scale, provided the time average of the radial component of the field just above the disk vanishes. A simple model of the time-dependent structure of the magnetosphere is presented. It is shown that energy release in the magnetosphere must take place for (differential) rotation angles less than about 3 radians. The magnetic flux distribution in the disk depends on the precise value of the rotation angle.  相似文献   

9.
强迫扰动下的射流撞击雾化特性   总被引:1,自引:0,他引:1  
李佳楠  雷凡培  杨岸龙  周立新 《航空学报》2020,41(12):124027-124027
为全面把握撞击式喷嘴的工作特性,进一步认识雾化在燃烧不稳定中所起的作用,采用试验结合数值模拟的方法开展了强迫扰动条件下撞击式喷嘴的非稳态雾化特性研究。试验方面,采用水力扰动装置产生喷前压力扰动,由脉动压力传感器记录喷前的脉动压力,由高速摄影对动态的喷雾场进行背光拍摄。数值模拟则是基于开源程序Gerris开展,通过给定周期性变化的速度入口来模拟前端压力扰动下的撞击雾化过程。首先验证了建立的数值模拟方案处理非稳态雾化的有效性,其次将自然雾化与强迫扰动雾化进行对比,分析了强迫扰动条件下的撞击雾化特性,最后研究了扰动频率与扰动幅值对于撞击雾化的影响。结果表明:强迫扰动下的射流撞击喷雾场出现了弓形液滴群局部聚集的现象,并且在时间上表现出周期性特征,雾化频率与强迫扰动的频率一致。在研究的频率范围(1 257~3 563 Hz)内,撞击式喷嘴的雾化对扰动都有响应。扰动频率主要影响相邻弓形液滴群之间的间距以及雾场与扰动压力之间的相位关系,扰动幅值则主要影响雾化Klystron效应的强度。随着扰动幅值的增大,液膜的破碎长度减小,撞击点下游的流量特性由线性向非线性转变,由正弦波形转变为陡峭前缘波形。  相似文献   

10.
由于感应电机驱动系统采用数字控制器和脉宽调制输出会伴随着数字延迟的问题,加之参数可能存在的扰动,使得传统的间接磁场定向控制方法在感应电机高速弱磁区的控制性能降低。针对此问题,提出了一种基于专家控制器和模糊推理机制的感应电机弱磁区优化控制策略。考虑到传统间接磁场定向控制中电流调节器在弱磁区若没有获得适合的电流参考指令,则可能会产生高频振荡乃至失稳。因此,在传统方法的基础上将转速闭环输出的电流参考先送入到专家控制器,专家控制器基于数据库和模糊推理,对电流参考进行修正,其中模糊推理机制基于简单的高斯函数逻辑实现。最后,构建了感应电机驱动试验平台,开展了电机在弱磁区的高速驱动试验,试验结果验证了新型控制策略的有效性。  相似文献   

11.
The problem of the origin and distribution of cosmic rays in the Galaxy is introduced by summarizing the literature on the radio and -ray studies of the Galaxy, discussing the propagation of cosmic rays in the interstellar medium, and listing the observed properties of cosmic rays. The localization of cosmic-ray electrons to their parent galaxies is an indicator that processes leading to cosmic-ray production may be common to galaxies like our own. The studies of external galaxies are therefore relevant to our own and have the advantage of better perspective.Studies of cosmic rays in exsternal galaxies are limited to the electron component which radiates synchrotron emission at radio frequencies. Multi-colour photometry of galaxies allows the separation of stellar populations that harbour particular classes of cosmic-ray sources. Statistical studies aimed at correlating integrated radio and optical properties of galaxies have reached conflicting conclusions. Although a correlation of cosmic rays with the older stellar population is proposed by some authors, others argue that the young stellar population harbours cosmic ray sources.Morphological studies of resolved galaxies provide information on the distributions of cosmic-ray electrons in galaxies. Studies in which the resolution of the radio images is much lower than in the optical are limited and have also produced contradictory results. Radio imaging at optical resolution is required for a direct comparison of cosmic-ray distributions with stellar distributions. Such studies are reviewed and the constraints they impose on cosmic-ray propagation and distribution of cosmic-ray sources is discussed.Theoretical cosmic-ray acceleration mechanisms are surveyed and an attempt is made to determine likely contributors. Mechanisms associated with shock waves in a variety of astrophysical settings are reviewed. Acceleration mechanisms not involving shocks, are also discussed. Finally, the status of the field is summarized along with some speculation on the future directions the field may take.  相似文献   

12.
星敏感器是一种高精度的姿态敏感测量系统,如何确定星敏感器上像点在摄影时刻所对应的恒星,即星图识别,是姿态测量的关键。本文根据星图识别问题本身的特点和神经网络技术的特性,提出了基于BP网络星图识别方法的一种可以兼顾性能和效率、利于实现的样本构造方法。  相似文献   

13.
This paper reviews solar flows and magnetic fields observed at the photospheric level. We first present the context in which these observations are performed. We describe the various temporal and spatial scales involved, and the coupling between them. Then we present small-scale flows, mainly supergranulation and flows around active regions. Flows at the global scale are then reviewed, again with emphasis on the flows, i.e. differential rotation, torsional oscillation and meridional circulation. In both small- and global-scale we discuss the coupling between flow fields and magnetic field and give an overview of observational techniques. Finally, the possible connection between studies of solar activity and stellar activity is briefly discussed.  相似文献   

14.
The solar wind and the solar XUV/EUV radiation constitute a permanent forcing of the upper atmosphere of the planets in our solar system, thereby affecting the habitability and chances for life to emerge on a planet. The forcing is essentially inversely proportional to the square of the distance to the Sun and, therefore, is most important for the innermost planets in our solar system—the Earth-like planets. The effect of these two forcing terms is to ionize, heat, chemically modify, and slowly erode the upper atmosphere throughout the lifetime of a planet. The closer to the Sun, the more efficient are these process. Atmospheric erosion is due to thermal and non-thermal escape. Gravity constitutes the major protection mechanism for thermal escape, while the non-thermal escape caused by the ionizing X-rays and EUV radiation and the solar wind require other means of protection. Ionospheric plasma energization and ion pickup represent two categories of non-thermal escape processes that may bring matter up to high velocities, well beyond escape velocity. These energization processes have now been studied by a number of plasma instruments orbiting Earth, Mars, and Venus for decades. Plasma measurement results therefore constitute the most useful empirical data basis for the subject under discussion. This does not imply that ionospheric plasma energization and ion pickup are the main processes for the atmospheric escape, but they remain processes that can be most easily tested against empirical data. Shielding the upper atmosphere of a planet against solar XUV, EUV, and solar wind forcing requires strong gravity and a strong intrinsic dipole magnetic field. For instance, the strong dipole magnetic field of the Earth provides a “magnetic umbrella”, fending of the solar wind at a distance of 10 Earth radii. Conversely, the lack of a strong intrinsic magnetic field at Mars and Venus means that the solar wind has more direct access to their topside atmosphere, the reason that Mars and Venus, planets lacking strong intrinsic magnetic fields, have so much less water than the Earth? Climatologic and atmospheric loss process over evolutionary timescales of planetary atmospheres can only be understood if one considers the fact that the radiation and plasma environment of the Sun has changed substantially with time. Standard stellar evolutionary models indicate that the Sun after its arrival at the Zero-Age Main Sequence (ZAMS) 4.5 Gyr ago had a total luminosity of ≈70% of the present Sun. This should have led to a much cooler Earth in the past, while geological and fossil evidence indicate otherwise. In addition, observations by various satellites and studies of solar proxies (Sun-like stars with different age) indicate that the young Sun was rotating more than 10 times its present rate and had correspondingly strong dynamo-driven high-energy emissions which resulted in strong X-ray and extreme ultraviolet (XUV) emissions, up to several 100 times stronger than the present Sun. Further, evidence of a much denser early solar wind and the mass loss rate of the young Sun can be determined from collision of ionized stellar winds of the solar proxies, with the partially ionized gas in the interstellar medium. Empirical correlations of stellar mass loss rates with X-ray surface flux values allows one to estimate the solar wind mass flux at earlier times, when the solar wind may have been more than 1000 times more massive. The main conclusions drawn on basis of the Sun-in-time-, and a time-dependent model of plasma energization/escape is that:
  1. Solar forcing is effective in removing volatiles, primarily water, from planets,
  2. planets orbiting close to the early Sun were subject to a heavy loss of water, the effect being most profound for Venus and Mars, and
  3. a persistent planetary magnetic field, like the Earth’s dipole field, provides a shield against solar wind scavenging.
  相似文献   

15.
螺旋桨滑流产生的加速效应、旋转效应、粘性效应等对于处于后方的进气道性能有显著的影响。基于计算流体力学方法(CFD),通过求解非定常 RANS方程,采用滑移动态网格技术来模拟螺旋桨的旋转,建立考虑螺旋桨滑流的飞机进气道气动特性数值仿真方法;以某多轴式涡桨动力系统为研究对象,对螺旋桨滑流对进气道内流的影响进行分析。结果表明:在地面与起飞两个大拉力状态下,有滑流进气道出口总压恢复系数较无滑流的有所提高;而巡航状态下有滑流进气道出口总压恢复系数却降低,除地面小速度状态外,在起飞以及巡 航飞行状态下,滑流会增加进气道出口总压畸变指数。  相似文献   

16.
刘为杰  何帆  凌忠伟 《航空学报》2019,40(11):123154-123154
针对2.4 m跨声速风洞总压和马赫数控制具有强耦合、时滞、系统参数摄动和外界干扰不确定性等特点,设计了预测自抗扰控制。采用自抗扰控制(ADRC),将总压和马赫数两个通道之间的耦合、流场建模误差、系统的参数摄动和外界干扰等视为总干扰,通过扩张状态观测器(ESO)将总干扰估算出来并进行前馈补偿,一方面可以实现总压和马赫数的解耦控制,另一方面提高了流场的抗干扰能力。同时使用Smith预估器得到系统无时延输出并将其反馈至扩张状态观测器,加快其收敛速度,从而提高控制系统的性能。仿真结果表明,该控制器能够很好地实现总压和马赫数的解耦,并且具有良好的动态特性、抗干扰能力和鲁棒性。  相似文献   

17.
Magnetic reconnection is a fundamental plasma physics process in which ideal-MHD??s frozen-in constraints are broken and the magnetic field topology is dramatically re-arranged, which often leads to a violent release of the free magnetic energy. Most of the magnetic reconnection research done to date has been motivated by the applications to systems such as the solar corona, Earth??s magnetosphere, and magnetic confinement devices for thermonuclear fusion. These environments have relatively low energy densities and the plasma is adequately described as a mixture of equal numbers of electrons and ions and where the dissipated magnetic energy always stays with the plasma. In contrast, in this paper I would like to introduce a different, new direction of research??reconnection in high energy density radiative plasmas, in which photons play as important a role as electrons and ions; in particular, in which radiation pressure and radiative cooling become dominant factors in the pressure and energy balance. This research is motivated in part by rapid theoretical and experimental advances in High Energy Density Physics, and in part by several important problems in modern high-energy astrophysics. I first discuss some astrophysical examples of high-energy-density reconnection and then identify the key physical processes that distinguish them from traditional reconnection. Among the most important of these processes are: special-relativistic effects; radiative effects (radiative cooling, radiation pressure, and radiative resistivity); and, at the most extreme end??QED effects, including pair creation. The most notable among the astrophysical applications are situations involving magnetar-strength fields (1014?C1015 G, exceeding the quantum critical field B ??4×1013 G). The most important examples are giant flares in soft gamma repeaters (SGRs) and magnetic models of the central engines and relativistic jets of Gamma Ray Bursts (GRBs). The magnetic energy density in these environments is so high that, when it is suddenly released, the plasma is heated to ultra-relativistic temperatures. As a result, electron-positron pairs are created in copious quantities, dressing the reconnection layer in an optically thick pair coat, thereby trapping the photons. The plasma pressure inside the layer is then dominated by the combined radiation and pair pressure. At the same time, the timescale for radiation diffusion across the layer may, under some conditions, still be shorter than the global (along the layer) Alfvén transit time, and hence radiative cooling starts to dominate the thermodynamics of the problem. The reconnection problem then becomes essentially a radiative transfer problem. In addition, the high pair density makes the reconnection layer highly collisional, independent of the upstream plasma density, and hence radiative resistive MHD applies. The presence of all these processes calls for a substantial revision of our traditional physical picture of reconnection when applied to these environments and thus opens a new frontier in reconnection research.  相似文献   

18.
The observed magnetic field configuration and signatures of reconnection in the large solar magnetic eruptions that make major flares and coronal mass ejections and in the much smaller magnetic eruptions that make X-ray jets are illustrated with cartoons and representative observed eruptions. The main reconnection signatures considered are the imaged bright emission from the heated plasma on reconnected field lines. In any of these eruptions, large or small, the magnetic field that drives the eruption and/or that drives the buildup to the eruption is initially a closed bipolar arcade. From the form and configuration of the magnetic field in and around the driving arcade and from the development of the reconnection signatures in coordination with the eruption, we infer that (1) at the onset of reconnection the reconnection current sheet is small compared to the driving arcade, and (2) the current sheet can grow to the size of the driving arcade only after reconnection starts and the unleashed erupting field dynamically forces the current sheet to grow much larger, building it up faster than the reconnection can tear it down. We conjecture that the fundamental reason the quasi-static pre-eruption field is prohibited from having a large current sheet is that the magnetic pressure is much greater than the plasma pressure in the chromosphere and low corona in eruptive solar magnetic fields.  相似文献   

19.
介绍了磁力传动联轴器的结构、工作原理以及在数字气体活塞压力计上的应用.磁力传动联轴器解决了数字气体活塞压力计绝压工作模式的传动密封问题,为数字气体活塞压力计的成功研制提供了密封保证.  相似文献   

20.
In light of assessing the habitability of Mars, we examine the impact of the magnetic field on the atmosphere. When there is a magnetic field, the atmosphere is protected from erosion by solar wind. The magnetic field ensures the maintenance of a dense atmosphere, necessary for liquid water to exist on the surface of Mars. We also examine the impact of the rotation of Mars on the magnetic field. When the magnetic field of Mars ceased to exist (about 4 Gyr ago), atmospheric escape induced by solar wind began. We consider scenarios which could ultimately lead to a decrease of atmospheric pressure to the presently observed value of 7 mbar: a much weaker early martian magnetic field, a late onset of the dynamo, and high erosion rates of a denser early atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号