首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
Vignes  D.  Acuña  M.H.  Connerney  J.E.P.  Crider  D.H.  Rème  H.  Mazelle  C. 《Space Science Reviews》2004,111(1-2):223-231
We report observations of magnetic fields amplitude, which consist of a series of individual spikes in the Martian atmosphere. A minimum variance analysis shows that these spikes form twisted cylindrical filaments. These small diameter magnetic filaments are commonly called magnetic flux ropes. We examine the global characteristics of magnetic flux ropes, which are observed on 5% of the elliptical orbits of Mars Global Surveyor. Flux ropes are more often observed in Venus' atmosphere (70% of the orbits). In this paper we report some of the global characteristics of the flux ropes identified in the Martian atmosphere. No flux ropes are observed in the southern hemisphere of Mars. Most of them occur at high solar zenith angles, close to the terminator plane, and at high latitude with altitudes below 400 km. The orientation of the flux ropes appears random while in the case of Venus the orientation is more horizontal near the terminator for altitudes greater than 200 km. We have identified fewer flux ropes for SZA between 40 to 60 deg and for SZA lower than 20 deg, like in the case of Venus (Elphic and Russell, 1983b). Statistically, Mars' ionosphere with SZA range between 40circ to 60circ is less magnetized than near the subsolar point. As the Martian ionosphere is quite often magnetized by the magnetic components of the crustal field, this crustal magnetic field seems to inhibit the flux ropes formation in the southern hemisphere. However, some orbits without crustal magnetic field, called magnetic cavities, were observed without flux ropes. So the flux ropes formation process seems to be uppressed by another factor, like the solar wind dynamic pressure for Venus (Krymskii and Breus, 1988).  相似文献   

2.
It is generally accepted that the energy that drives coronal mass ejections (CMEs) is magnetic in origin. Sheared and twisted coronal fields can store free magnetic energy which ultimately is released in the CME. We explore the possibility of the specific magnetic configuration of a magnetic flux rope of field lines that twist about an axial field line. The flux rope model predicts coronal observables, including heating along forward or inverse S-shaped, or sigmoid, topological surfaces. Therefore, studying the observed evolution of such sigmoids prior to, during, and after the CME gives us crucial insight into the physics of coronal storage and release of magnetic energy. In particular, we consider (1) soft-X-ray sigmoids, both transient and persistent; (2) The formation of a current sheet and cusp-shaped post-flare loops below the CME; (3) Reappearance of sigmoids after CMEs; (4) Partially erupting filaments; (5) Magnetic cloud observations of filament material.  相似文献   

3.
Many properties of magnetic reconnection have been determined from in-situ spacecraft observations in the Earth??s magnetosphere. Recent studies have focused on ion scale lengths and have largely confirmed theoretical predictions. In addition, some interesting features of reconnection regions on electron scale lengths have been identified. These recent studies have demonstrated the need for combined plasma and field measurements on electron scale lengths in the reconnection diffusion regions at the magnetopause and in the magnetotail. They have also indicated that measurements, such as those that will be made by the Magnetospheric Multiscale mission in the near future, will have a significant impact on understanding magnetic reconnection as a fundamental plasma process.  相似文献   

4.
Magnetic fields emerging from the Sun’s interior carry information about physical processes of magnetic field generation and transport in the convection zone. Soon after appearance on the solar surface the magnetic flux gets concentrated in sunspot regions and causes numerous active phenomena on the Sun. This paper discusses some properties of the emerging magnetic flux observed on the solar surface and in the interior. A statistical analysis of variations of the tilt angle of bipolar magnetic regions during the emergence shows that the systematic tilt with respect to the equator (the Joy’s law) is most likely established below the surface. However, no evidence of the dependence of the tilt angle on the amount of emerging magnetic flux, predicted by the rising magnetic flux rope theories, is found. Analysis of surface plasma flows in a large emerging active region reveals strong localized upflows and downflows at the initial phase of emergence but finds no evidence for large-scale flows indicating future appearance a large-scale magnetic structure. Local helioseismology provides important tools for mapping perturbations of the wave speed and mass flows below the surface. Initial results from SOHO/MDI and GONG reveal strong diverging flows during the flux emergence, and also localized converging flows around stable sunspots. The wave speed images obtained during the process of formation of a large active region, NOAA 10488, indicate that the magnetic flux gets concentrated in strong field structures just below the surface. Further studies of magnetic flux emergence require systematic helioseismic observations from the ground and space, and realistic MHD simulations of the subsurface dynamics.  相似文献   

5.
The idea of expedient energy transformation by magnetic reconnection (MR) has generated much enthusiasm in the space plasma community. The early concept of MR, which was envisioned for the solar flare phenomenon in a simple two-dimensional (2D) steady-state situation, is in dire need for extension to encompass three-dimensional (3D) non-steady-state phenomena prevalent in space plasmas in nature like in the magnetosphere. A workshop was organized to address this and related critical issues on MR. The essential outcome of this workshop is summarized in this review. After a brief evaluation on the pros and cons of existing definitions of MR, we propose essentially a working definition that can be used to identify MR in transient and spatially localized phenomena. The word “essentially” reflects a slight diversity in the opinion on how transient and localized 3D MR process might be defined. MR is defined here as a process with the following characteristics: (1) there is a plasma bulk flow across a boundary separating regions with topologically different magnetic field lines if projected on the plane of MR, thereby converting magnetic energy into kinetic particle energy, (2) there can be an out-of-the-plane magnetic field component (the so-called guide field) present such that the reconnected magnetic flux tubes are twisted to form flux ropes, and (3) the region exhibiting non-ideal MHD conditions should be localized to a scale comparable to the ion inertial length in the direction of the plasma inflow velocity. This definition captures the most important 3D aspects and preserves many essential characteristics of the 2D case. It may be considered as the first step in the generalization of the traditional 2D concept. As a demonstration on the utility of this definition, we apply it to identify MR associated with plasma phenomena in the dayside magnetopause and nightside magnetotail of the Earth’s magnetosphere. How MR may be distinguished from other competing mechanisms for these magnetospheric phenomena are then discussed.This revised version was published online in July 2005 with a corrected cover date.  相似文献   

6.
Although the auroral substorm has been long regarded as a manifestation of the magnetospheric substorm, a direct relation of active auroras to certain magnetospheric processes is still debatable. To investigate the relationship, we combine the data of the UV imager onboard the Polar satellite with plasma and magnetic field measurements by the Geotail spacecraft. The poleward edge of the auroral bulge, as determined from the images obtained at the LHBL passband, is found to be conjugated with the region where the oppositely directed fast plasma flows observed in the near-Earth plasma sheet during substorms are generated. We conclude that the auroras forming the bulge are due to the near-Earth reconnection process. This implies that the magnetic flux through the auroral bulge is equal to the flux dissipated in the magnetotail during the substorm. Comparison of the magnetic flux through the auroral bulge with the magnetic flux accumulated in the tail lobe during the growth phase shows that these parameters have the comparable values. This is a clear evidence of the loading–unloading scheme of substorm development. It is shown that the area of the auroral bulge developing during substorm is proportional to the total (magnetic plus plasma) pressure decrease in the magnetotail. These findings stress the importance of auroral bulge observations for monitoring of substorm intensity in terms of the magnetic flux and energy dissipation.  相似文献   

7.
将分段等效磁路法应用于磁流变阻尼器的磁路计算。通过对磁路结构的综合分析,建立了磁流变阻尼器的分段等效磁路模型。采用网孔法建立了多分支复杂网络系统的非线性网络方程组。最后应用迭代法求解非线性网络方程组的磁通,计算了样机的磁通分布和磁通利用率。计算结果能够根据等效磁路模型的细分程度满足不同计算精度的需要,简化了磁路计算,具有较高的实用价值。  相似文献   

8.
The high magnetic energy stored in rare earth-cobalt magnets allows the design of lightweight motors and magnetic bearings for high-speed rotors. Magnetic bearings are not subject to wear and with the ability to operate under high vacuum conditions, they appear ideal for applications requiring high rotational speeds such as 100 000 r/min. Important applications are for turbomolecular pumps, laser scanners, centrifuges, momentum rings for satellite stabilizations, and other uses in space technology. This paper presents a two-dimemsional nonlinear numerical analysis of the magnetic fields in a magnetic bearing, based on magnetostatic assumptions and finite-difference iterative techniques.  相似文献   

9.
针对基于电感的永磁同步电机(PMSM)线性集中参数模型无法描述电机磁路饱和、反电动势非正弦等非理想特性的问题,提出一种基于磁链重构的PMSM分布参数模型,并进行了仿真和试验验证。首先通过有限元分析(FEA)获取电机不同工作点下的磁链,其次利用傅里叶级数展开和多项式拟合方法对磁链进行重构,再根据重构的磁链建立起PMSM分布参数模型,并进行了仿真和试验验证。仿真和试验结果表明,模型能准确描述PMSM在不同工况下的非线性特性。  相似文献   

10.
After introducing a mathematical definition of the tail-like equilibrium and the dipole-like equilibrium in the magnetosphere, it is shown by using physical intuition based on the Energy Principle that the incompressible assumption for the ballooning instability is more valid for the tail-like configuration when the unstable ballooning mode is strongly localized near the equator. Therefore, before the substorm onset, the near-Earth plasma sheet becomes more tail-like and more likely to be subject to the ballooning instability without the stabilizing influence of the compressibility, when the critical plasma due to the stabilizing tension force is exceeded. The onset of the ballooning instability in the near-Earth plasma sheet seems promisingly relevant to the substorm onset phenomena. Also, the effect of the stochastic plasma dynamics on the ballooning and interchange instabilities is clearly shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号