首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The evolution and escape of the martian atmosphere and the planet’s water inventory can be separated into an early and late evolutionary epoch. The first epoch started from the planet’s origin and lasted ~500 Myr. Because of the high EUV flux of the young Sun and Mars’ low gravity it was accompanied by hydrodynamic blow-off of hydrogen and strong thermal escape rates of dragged heavier species such as O and C atoms. After the main part of the protoatmosphere was lost, impact-related volatiles and mantle outgassing may have resulted in accumulation of a secondary CO2 atmosphere of a few tens to a few hundred mbar around ~4–4.3 Gyr ago. The evolution of the atmospheric surface pressure and water inventory of such a secondary atmosphere during the second epoch which lasted from the end of the Noachian until today was most likely determined by a complex interplay of various nonthermal atmospheric escape processes, impacts, carbonate precipitation, and serpentinization during the Hesperian and Amazonian epochs which led to the present day surface pressure.  相似文献   

2.
The evolution of Mars is discussed using results from the recent Mars Global Surveyor (MGS) and Mars Pathfinder missions together with results from mantle convection and thermal history models and the chemistry of Martian meteorites. The new MGS topography and gravity data and the data on the rotation of Mars from Mars Pathfinder constrain models of the present interior structure and allow estimates of present crust thickness and thickness variations. The data also allow estimates of lithosphere thickness variation and heat flow assuming that the base of the lithosphere is an isotherm. Although the interpretation is not unambiguous, it can be concluded that Mars has a substantial crust. It may be about 50 km thick on average with thickness variations of another ±50 km. Alternatively, the crust may be substantially thicker with smaller thickness variations. The former estimate of crust thickness can be shown to be in agreement with estimates of volcanic production rates from geologic mapping using data from the camera on MGS and previous missions. According to these estimates most of the crust was produced in the Noachian, roughly the first Gyr of evolution. A substantial part of the lava generated during this time apparently poured onto the surface to produce the Tharsis bulge, the largest tectonic unit in the solar system and the major volcanic center of Mars. Models of crust growth that couple crust growth to mantle convection and thermal evolution are consistent with an early 1 Gyr long phase of vigorous volcanic activity. The simplest explanation for the remnant magnetization of crustal units of mostly the southern hemisphere calls for an active dynamo in the Noachian, again consistent with thermal history calculations that predict the core to become stably stratified after some hundred Myr of convective cooling and dynamo action. The isotope record of the Martian meteorites suggest that the core formed early and rapidly within a few tens of Myr. These data also suggest that the silicate rock component of the planet was partially molten during that time. The isotope data suggest that heterogeneity resulted from core formation and early differentiation and persisted to the recent past. This is often taken as evidence against vigorous mantle convection and early plate tectonics on Mars although the latter assumption can most easily explain the early magnetic field. The physics of mantle convection suggests that there may be a few hundred km thick stagnant, near surface layer in the mantle that would have formed rapidly and may have provided the reservoirs required to explain the isotope data. The relation between the planform of mantle convection and the tectonic features on the surface is difficult to entangle. Models call for long wavelength forms of flow and possibly a few strong plumes in the very early evolution. These plumes may have dissolved with time as the core cooled and may have died off by the end of the Noachian.  相似文献   

3.
Ongoing research on martian meteorites and a new set of observations of carbonate minerals provided by an unprecedented series of robotic missions to Mars in the past 15 years help define new constraints on the history of martian climate with important crosscutting themes including: the CO2 budget of Mars, the role of Mg-, Fe-rich fluids on Mars, and the interplay between carbonate formation and acidity. Carbonate minerals have now been identified in a wide range of localities on Mars as well as in several martian meteorites. The martian meteorites contain carbonates in low abundances (<1 vol.%) and with a wide range of chemistries. Carbonates have also been identified by remote sensing instruments on orbiting spacecraft in several surface locations as well as in low concentrations (2–5 wt.%) in the martian dust. The Spirit rover also identified an outcrop with 16 to 34 wt.% carbonate material in the Columbia Hills of Gusev Crater that strongly resembled the composition of carbonate found in martian meteorite ALH 84001. Finally, the Phoenix lander identified concentrations of 3–6 wt.% carbonate in the soils of the northern plains. The carbonates discovered to date do not clearly indicate the past presence of a dense Noachian atmosphere, but instead suggest localized hydrothermal aqueous environments with limited water availability that existed primarily in the early to mid-Noachian followed by low levels of carbonate formation from thin films of transient water from the late Noachian to the present. The prevalence of carbonate along with evidence for active carbonate precipitation suggests that a global acidic chemistry is unlikely and a more complex relationship between acidity and carbonate formation is present.  相似文献   

4.
Geochemical investigation of Martian meteorites (SNC meteorites) yields important constraints on the chemical and geodynamical evolution of Mars. These samples may not be representative of the whole of Mars; however, they provide constraints on the early differentiation processes on Mars. The bulk composition of Martian samples implies the presence of a metallic core that formed concurrently as the planet accreted. The strong depletion of highly siderophile elements in the Martian mantle is only possible if Mars had a large scale magma ocean early in its history allowing efficient separation of a metallic melt from molten silicate. The solidification of the magma ocean created chemical heterogeneities whose ancient origin is manifested in the heterogeneous 142Nd and 182W abundances observed in different meteorite groups derived from Mars. The isotope anomalies measured in SNC meteorites imply major chemical fractionation within the Martian mantle during the life time of the short-lived isotopes 146Sm and 182Hf. The Hf-W data are consistent with very rapid accretion of Mars within a few million years or, alternatively, a more protracted accretion history involving several large impacts and incomplete metal-silicate equilibration during core formation. In contrast to Earth early-formed chemical heterogeneities are still preserved on Mars, albeit slightly modified by mixing processes. The preservation of such ancient chemical differences is only possible if Mars did not undergo efficient whole mantle convection or vigorous plate tectonic style processes after the first few tens of millions of years of its history.  相似文献   

5.
Cratering Chronology and the Evolution of Mars   总被引:3,自引:0,他引:3  
Results by Neukum et al. (2001) and Ivanov (2001) are combined with crater counts to estimate ages of Martian surfaces. These results are combined with studies of Martian meteorites (Nyquist et al., 2001) to establish a rough chronology of Martian history. High crater densities in some areas, together with the existence of a 4.5 Gyr rock from Mars (ALH84001), which was weathered at about 4.0 Gyr, affirm that some of the oldest surfaces involve primordial crustal materials, degraded by various processes including megaregolith formation and cementing of debris. Small craters have been lost by these processes, as shown by comparison with Phobos and with the production function, and by crater morphology distributions. Crater loss rates and survival lifetimes are estimated as a measure of average depositional/erosional rate of activity.We use our results to date the Martian epochs defined by Tanaka (1986). The high crater densities of the Noachian confine the entire Noachian Period to before about 3.5 Gyr. The Hesperian/Amazonian boundary is estimated to be about 2.9 to 3.3 Gyr ago, but with less probability could range from 2.0 to 3.4 Gyr. Mid-age dates are less well constrained due to uncertainties in the Martian cratering rate. Comparison of our ages with resurfacing data of Tanaka et al. (1987) gives a strong indication that volcanic, fluvial, and periglacial resurfacing rates were all much higher in approximately the first third of Martian history. We estimate that the Late Amazonian Epoch began a few hundred Myr ago (formal solutions 300 to 600 Myr ago). Our work supports Mariner 9 era suggestions of very young lavas on Mars, and is consistent with meteorite evidence for Martian igneous rocks 1.3 and 0.2 – 0.3 Gyr old. The youngest detected Martian lava flows give formal crater retention ages of the order 10 Myr or less. We note also that certain Martian meteorites indicate fluvial activity younger than the rock themselves, 700 Myr in one case, and this is supported by evidence of youthful water seeps. The evidence of youthful volcanic and aqueous activity, from both crater-count and meteorite evidence, places important constraints on Martian geological evolution and suggests a more active, complex Mars than has been visualized by some researchers.  相似文献   

6.
In this paper a model is presented for the geochemical evolution of Mars which is constrained by the isotope systematics of Pb, Nd, and Sr determined for SNC meteorites (SNCs). The young magmatic crystallization ages (internal or mineral ages) of SNCs may indicate that these meteorites indeed stem from Mars. Internal ages and U-Pb and Pb-Pb systematics strongly suggest that they are the result of two magmatic processes. In addition, shock metamorphism is implied from observed petrographic shock features. For ALHA 77009 a shock-age < 15 Ma is obtained which is within uncertainty identical to the independently determined cosmic ray exposure age. It is therefore plausible that shock and exposure ages are identical for all SNCs. The Rb/Sr data of all common (non-SNC) meteorites form a 4.55 Ga isochron as do the Pb-Pb data (geochron). The SNC data fall close to these two isochrons. The Sr and Pb isotopic compositions in SNCs suggest that they formed in a recent (1.3-0.15 Ga) melting event from reservoirs which had been magmatically differentiated 4.3 ± 0.2 Ga ago. In a concordia diagram (U-Pb evolution plot) the SNC data reflect recent increase of the U/Pb ratio and the same two stage magmatic history as suggested by the other isotopic systems. The oxygen isotopic composition as well as the Nd isotopic systematics strongly suggest that the SNCs stem from one common reservoir which chemically differentiated 4.3 ± 0.2 Ga ago and then formed sub-reservoirs. In contrast to common meteorites, SNCs experienced an early magmatic differentiation where the Sm/Nd, U/Pb and Rb/Sr ratios have been strongly fractionated. In the recent magmatic process (1.3-0.15 Ga ago), in which the SNCs were formed as rocks, Sm/Nd and U/Pb were fractionated, while Rb/Sr remained similar to that of the source from which the magmas originated. During these melting events, mixing of components from different sub-reservoirs might have had occurred. At least three subreservoirs are necessary to explain the isotopic variations observed in SNCs. In contrast to the isotopic evolution of the Earth, Mars conserved remnants of the primary differentiation, a fact, which places important constraints on the tectonic evolution of Mars.  相似文献   

7.
We review the radiometric ages of the 16 currently known Martian meteorites, classified as 11 shergottites (8 basaltic and 3 lherzolitic), 3 nakhlites (clinopyroxenites), Chassigny (a dunite), and the orthopyroxenite ALH84001. The basaltic shergottites represent surface lava flows, the others magmas that solidified at depth. Shock effects correlate with these compositional types, and, in each case, they can be attributed to a single shock event, most likely the meteorite's ejection from Mars. Peak pressures in the range 15 – 45 GPa appear to be a "launch window": shergottites experienced ~30 – 45 GPa, nakhlites ~20 ± 5 GPa, Chassigny ~35 GPa, and ALH84001 ~35 – 40 GPa. Two meteorites, lherzolitic shergottite Y-793605 and orthopyroxenite ALH84001, are monomict breccias, indicating a two-phase shock history in toto: monomict brecciation at depth in a first impact and later shock metamorphism in a second impact, probably the ejection event. Crystallization ages of shergottites show only two pronounced groups designated S1 (~175 Myr), including 4 of 6 dated basalts and all 3 lherzolites, and S2 (330 – 475 Myr), including two basaltic shergottites and probably a third according to preliminary data. Ejection ages of shergottites, defined as the sum of their cosmic ray exposure ages and their terrestrial residence ages, range from the oldest (~20 Myr) to the youngest (~0.7 Myr) values for Martian meteorites. Five groups are distinguished and designated SDho (one basalt, ~20 Myr), SL (two lherzolites of overlapping ejection ages, 3.94 ± 0.40 Myr and 4.70 ± 0.50 Myr), S (four basalts and one lherzolite, ~2.7 – 3.1 Myr), SDaG (two basalts, ~1.25 Myr), and SE (the youngest basalt, 0.73 ± 0.15 Myr). Consequently, crystallization age group S1 includes ejection age groups SL, SE and 4 of the 5 members of S, whereas S2 includes the remaining member of S and one of the two members of SDaG. Shock effects are different for basalts and lherzolites in group S/S1. Similarities to the dated meteorite DaG476 suggest that the two shergottites that are not dated yet belong to group S2. Whether or not S2 is a single group is unclear at present. If crystallization age group S1 represents a single ejection event, pre-exposure on the Martian surface is required to account for ejection ages of SL that are greater than ejection ages of S, whereas secondary breakup in space is required to account for ejection ages of SE less than those of S. Because one member of crystallization age group S2 belongs to ejection group S, the maximum number of shergottite ejection events is 6, whereas the minimum number is 2. Crystallization ages of nakhlites and Chassigny are concordant at ~1.3 Gyr. These meteorites also have concordant ejection ages, i.e., they were ejected together in a single event (NC). Shock effects vary within group NC between the nakhlites and Chassigny. The orthopyroxenite ALH84001 is characterized by the oldest crystallization age of ~4.5 Gyr. Its secondary carbonates are ~3.9 Gyr old, an age corresponding to the time of Ar-outgassing from silicates. Carbonate formation appears to have coincided with impact metamorphism, either directly, or indirectly, perhaps via precipitation from a transient impact crater lake. The crystallization age and the ejection age of ALH84001, the second oldest ejection age at 15.0 ± 0.8 Myr, give evidence for another ejection event (O). Consequently, the total number of ejection events for the 16 Martian meteorites lies in the range 4 – 8. The Martian meteorites indicate that Martian magmatism has been active over most of Martian geologic history, in agreement with the inferred very young ages of flood basalt flows observed in Elysium and Amazonis Planitia with the Mars Orbital Camera (MOC) on the Mars Global Surveyor (MGS). The provenance of the youngest meteorites must be found among the youngest volcanic surfaces on Mars, i.e., in the Tharsis, Amazonis, and Elysium regions.  相似文献   

8.
The main aspects of the Martian stratigraphy have been determined from the detailed study of Mariner 9 and Viking Orbiter images. Three major stratigraphic systems, the Noachian System, the Hesperian System, and the Amazonian System, are inferred from these studies. The global geological evolution of Mars is essentially derived from its stratigraphy. It reveals that tectonism and volcanism were widespread during two major periods (Noachian and Lower Hesperian) and became more localized during the Upper Hesperian and Amazonian periods. The transition between these two major periods occurred about 2 Ga ago, and significant geologic activity could still be present. However, a number of geologic features and processes remain little understood. Future investigations, including complete high resolution imaging and detailed mapping, geochemical mapping, in situ chemical analyses, etc., will be necessary in order to improve our knowledge of the Martian stratigraphy and geologic evolution and are essential to prepare any future Mars Sample Return mission and the Human Exploration of this planet.  相似文献   

9.
Nitrogen isotopes have played an important part in the acceptance of the hypothesis that SNC meteorites derive from Mars. As a result, these meteorites can be investigated for their carbon, sulphur, and hydrogen systematics with a view to learning something about the environmental conditions on the planet. Important aspects of the role of carbon, present in the form of carbon dioxide as an atmospheric gas and leading to the formation of carbonates by weathering or hydrothermal activity, can be established. The presence of indigenous organics is an intriguing possibility. A variety of new or emerging techniques which could improve our understanding of SNC meteorites and might be applied to a returned Martian sample are discussed.  相似文献   

10.
The SNC (Shergotty-Nakhla-Chassigny) meteorites have recorded interactions between martian crustal fluids and the parent igneous rocks. The resultant secondary minerals — which comprise up to 1 vol.% of the meteorites — provide information about the timing and nature of hydrous activity and atmospheric processes on Mars. We suggest that the most plausible models for secondary mineral formation involve the evaporation of low temperature (25 – 150 °C) brines. This is consistent with the simple mineralogy of these assemblages — Fe-Mg-Ca carbonates, anhydrite, gypsum, halite, clays — and the chemical fractionation of Ca-to Mg-rich carbonate in ALH84001 "rosettes". Longer-lived, and higher temperature, hydrothermal systems would have caused more silicate alteration than is seen and probably more complex mineral assemblages. Experimental and phase equilibria data on carbonate compositions similar to those present in the SNCs imply low temperatures of formation with cooling taking place over a short period of time (e.g. days). The ALH84001 carbonate also probably shows the effects of partial vapourisation and dehydration related to an impact event post-dating the initial precipitation. This shock event may have led to the formation of sulphide and some magnetite in the Fe-rich outer parts of the rosettes.Radiometric dating (K-Ar, Rb-Sr) of the secondary mineral assemblages in one of the nakhlites (Lafayette) suggests that they formed between 0 and 670 Myr, and certainly long after the crystallisation of the host igneous rocks. Crystallisation of ALH84001 carbonate took place 0.5 Gyr after the parent rock. These age ranges and the other research on these assemblages suggest that environmental conditions conducive to near-surface liquid water have been present on Mars periodically over the last 1 Gyr. This fluid activity cannot have been continuous over geological time because in that case much more silicate alteration would have taken place in the meteorite parent rocks and the soluble salts would probably not have been preserved.The secondary minerals could have been precipitated from brines with seawater-like composition, high bicarbonate contents and a weakly acidic nature. The co-existence of siderite (Fe-carbonate) and clays in the nakhlites suggests that the pCO2 level in equilibrium with the parent brine may have been 50 mbar or more. The brines could have originated as flood waters which percolated through the top few hundred meters of the crust, releasing cations from the surrounding parent rocks. The high sulphur and chlorine concentrations of the martian soil have most likely resulted from aeolian redistribution of such aqueously-deposited salts and from reaction of the martian surface with volcanic acid volatiles.The volume of carbonates in meteorites provides a minimum crustal abundance and is equivalent to 50–250 mbar of CO2 being trapped in the uppermost 200–1000 m of the martian crust. Large fractionations in 18O between igneous silicate in the meteorites and the secondary minerals (30) require formation of the latter below temperatures at which silicate-carbonate equilibration could have taken place (400°C) and have been taken to suggest low temperatures (e.g. 150°C) of precipitation from a hydrous fluid.  相似文献   

11.
Geological mapping and establishment of stratigraphic relationships provides an overview of geological processes operating on Mars and how they have varied in time and space. Impact craters and basins shaped the crust in earliest history and as their importance declined, evidence of extensive regional volcanism emerged during the Late Noachian. Regional volcanism characterized the Early Hesperian and subsequent to that time, volcanism was largely centered at Tharsis and Elysium, continuing until the recent geological past. The Tharsis region appears to have been largely constructed by the Late Noachian, and represents a series of tectonic and volcanic centers. Globally distributed structural features representing contraction characterize the middle Hesperian. Water-related processes involve the formation of valley networks in the Late Noachian and into the Hesperian, an ice sheet at the south pole in the middle Hesperian, and outflow channels and possible standing bodies of water in the northern lowlands in the Late Hesperian and into the Amazonian. A significant part of the present water budget occurs in the present geologically young polar layered terrains. In order to establish more firmly rates of processes, we stress the need to improve the calibration of the absolute timescale, which today is based on crater count systems with substantial uncertainties, along with a sampling of rocks of unknown provenance. Sample return from carefully chosen stratigraphic units could calibrate the existing timescale and vastly improve our knowledge of Martian evolution.  相似文献   

12.
We review the geochemical observations of water, \(\mbox{D}/\mbox{H}\) and volatile element abundances of the inner Solar System bodies, Mercury, Venus, the Moon, and Mars. We focus primarily on the inventories of water in these bodies, but also consider other volatiles when they can inform us about water. For Mercury, we have no data for internal water, but the reducing nature of the surface of Mercury would suggest that some hydrogen may be retained in its core. We evaluate the current knowledge and understanding of venusian water and volatiles and conclude that the venusian mantle was likely endowed with as much water as Earth of which it retains a small but non-negligible fraction. Estimates of the abundance of the Moon’s internal water vary from Earth-like to one to two orders of magnitude more depleted. Cl, K, and Zn isotope anomalies for lunar samples argue that the giant impact left a unique geochemical fingerprint on the Moon, but not the Earth. For Mars, an early magma ocean likely generated a thick crust; this combined with a lack of crustal recycling mechanisms would have led to early isolation of the Martian mantle from later delivery of water and volatiles from surface reservoirs or late accretion. The abundance estimates of Martian mantle water are similar to those of the terrestrial mantle, suggesting some similarities in the water and volatile inventories for the terrestrial planets and the Moon.  相似文献   

13.
The early development of Mars is of enormous interest, not just in its own right, but also because it provides unique insights into the earliest history of the Earth, a planet whose origins have been all but obliterated. Mars is not as depleted in moderately volatile elements as are other terrestrial planets. Judging by the data for Martian meteorites it has Rb/Sr 0.07 and K/U 19,000, both of which are roughly twice as high as the values for the Earth. The mantle of Mars is also twice as rich in Fe as the mantle of the Earth, the Martian core being small (20% by mass). This is thought to be because conditions were more oxidizing during core formation. For the same reason a number of elements that are moderately siderophile on Earth such as P, Mn, Cr and W, are more lithophile on Mars. The very different apparent behavior of high field strength (HFS) elements in Martian magmas compared to terrestrial basalts and eucrites may be related to this higher phosphorus content. The highly siderophile element abundance patterns have been interpreted as reflecting strong partitioning during core formation in a magma ocean environment with little if any late veneer. Oxygen isotope data provide evidence for the relative proportions of chondritic components that were accreted to form Mars. However, the amount of volatile element depletion predicted from these models does not match that observed — Mars would be expected to be more depleted in volatiles than the Earth. The easiest way to reconcile these data is for the Earth to have lost a fraction of its moderately volatile elements during late accretionary events, such as giant impacts. This might also explain the non-chondritic Si/Mg ratio of the silicate portion of the Earth. The lower density of Mars is consistent with this interpretation, as are isotopic data. 87Rb-87Sr, 129I-129Xe, 146Sm-142Nd, 182Hf-182W, 187Re-187Os, 235U-207Pb and 238U-206Pb isotopic data for Martian meteorites all provide evidence that Mars accreted rapidly and at an early stage differentiated into atmosphere, mantle and core. Variations in heavy xenon isotopes have proved complicated to interpret in terms of 244Pu decay and timing because of fractionation thought to be caused by hydrodynamic escape. There are, as yet, no resolvable isotopic heterogeneities identified in Martian meteorites resulting from 92Nb decay to 92Zr, consistent with the paucity of perovskite in the martian interior and its probable absence from any Martian magma ocean. Similarly the longer-lived 176Lu-176Hf system also preserves little record of early differentiation. In contrast W isotope data, Ba/W and time-integrated Re/Os ratios of Martian meteorites provide powerful evidence that the mantle retains remarkably early heterogeneities that are vestiges of core metal segregation processes that occurred within the first 20 Myr of the Solar System. Despite this evidence for rapid accretion and differentiation, there is no evidence that Mars grew more quickly than the Earth at an equivalent size. Mars appears to have just stopped growing earlier because it did not undergo late stage (>20 Myr), impacts on the scale of the Moon-forming Giant Impact that affected the Earth.  相似文献   

14.
We examine the magnetic field in the martian magnetosheath due to solar wind draping. Mars Global Surveyor provided 3-D vector magnetic field measurements at a large range of altitudes, local times, and solar zenith angles as the spacecraft orbit evolved. We choose orbits with very clean signatures of draping to establish the nominal morphology of the magnetic field lines at local times of near-subsolar and near-terminator. Next, using a compilation of data from Mars Global Surveyor, we determine the average magnetic field morphology in the martian magnetosheath due to the solar wind interaction. The topology of the field is as expected from previous observations and predictions. The magnetic field magnitude peaks at low altitude and noon magnetic local time and decreases away from that point. The magnetic field has an inclination from the local horizontal of 5.6° on average in the dayside magnetosheath and 12.5° on the nightside. The inclination angle is closest to zero at noon magnetic local time and low altitude. It increases both upward and to later local times. The magnetic field in the induced magnetotail flares out from the Mars—Sun direction by 21°. Finally, we compare the observations to gasdynamic model predictions and find that the shocked solar wind flow in the martian magnetosheath can be treated as a gasdynamic flow with the magnetic pileup boundary as the inner boundary to the flow.  相似文献   

15.
Xenon plays a crucial role in models of atmospheric evolution in which noble gases are fractionated from their initial compositions to isotopically heavier distributions by early hydrodynamic escape of primordial planetary atmospheres. With the assumption that nonradiogenic Xe isotope ratios in present-day atmospheres were generated in this way, backward modeling from these ratios through the fractionating process can in principle identify likely parental Xe compositions and thus the probable sources of noble gases in pre-escape atmospheres. Applied to Earth, this approach simultaneously establishes the presence of an atmospheric Xe component due principally to fission of extinct 244Pu and identifies a composition called U-Xe as primordial Xe. Pu-Xe comprises 4.65±0.30% of atmospheric 136Xe, and 6.8±0.5% of the present abundance of 129Xe derives from decay of extinct 129I. U-Xe is identical to the measured composition of solar-wind Xe except for deficits of the two heaviest isotopes – an unexpected difference since the modeling otherwise points to solar wind compositions for the lighter noble gases in the primordial terrestrial atmosphere. Evidence for the presence of U-Xe is not restricted to the early Earth; modeling based on a purely meteoritic data set defines a parental component in chondrites and achondrites with the same isotopic distribution. Results of experimental efforts to measure this composition directly in meteorites are promising but not yet conclusive. U-Xe also appears as a possible base component in interstellar silicon carbide, here with superimposed excesses of 134Xe and 136Xe six-fold larger than those in the solar wind. These compositional differences imply mixing of U-Xe with a nucleogenetic heavy-isotope component whose relative abundance in the solar accretion disk and in pre-solar environments varied both spatially and temporally. In contrast to Earth, the U-Xe signature on Mars was apparently overwhelmed by local accretion of materials rich in either chondritic Xe or solar-wind Xe. Data currently in hand from SNC meteorites on the composition of the present atmosphere are insufficiently precise to constrain a modeling choice between these two candidates for primordial martian Xe. They likewise do not permit definitive resolution of a 244Pu component in the atmosphere although its presence is allowed within current measurement uncertainties. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Clays form on Earth by near-surface weathering, precipitation in water bodies within basins, hydrothermal alteration (volcanic- or impact-induced), diagenesis, metamorphism, and magmatic precipitation. Diverse clay minerals have been detected from orbital investigation of terrains on Mars and are globally distributed, indicating geographically widespread aqueous alteration. Clay assemblages within deep stratigraphic units in the Martian crust include Fe/Mg smectites, chlorites and higher temperature hydrated silicates. Sedimentary clay mineral assemblages include Fe/Mg smectites, kaolinite, and sulfate, carbonate, and chloride salts. Stratigraphic sequences with multiple clay-bearing units have an upper unit with Al-clays and a lower unit with Fe/Mg-clays. The typical restriction of clay minerals to the oldest, Noachian terrains indicates a distinctive set of processes involving water-rock interaction that was prevalent early in Mars history and may have profoundly influenced the evolution of Martian geochemical systems. Current analyses of orbital data have led to the proposition of multiple clay-formation mechanisms, varying in space and time in their relative importance. These include near-surface weathering, formation in ice-dominated near-surface groundwaters, and formation by subsurface hydrothermal fluids. Near-surface, open system formation of clays would lead to fractionation of Mars’ crustal reservoir into an altered crustal reservoir and a sedimentary reservoir, potentially involving changes in the composition of Mars’ atmosphere. In contrast, formation of clays in the subsurface by either aqueous alteration or magmatic cooling would result in comparatively little geochemical fractionation or interaction of Mars’ atmospheric, crustal, and magmatic reservoirs, with the exception of long-term sequestration of water. Formation of clays within ice would have geochemical consequences intermediate between these endmembers. We outline the future analyses of orbital data, in situ measurements acquired within clay-bearing terrains, and analyses of Mars samples that are needed to more fully elucidate the mechanisms of martian clay formation and to determine the consequences for the geochemical evolution of the planet.  相似文献   

17.
Retrieval of crustal structure and thickness of Mars is among the main goals of InSight. Here we investigate which constraints on the crust at the landing site can be provided by apparent P-wave incidence angles derived from P-receiver functions. We consider receiver functions for six different Mars models, calculated from synthetic seismograms generated via Instaseis from the Green’s function databases of the Marsquake Service, in detail. To allow for a larger range of crustal thicknesses and structures, we additionally analyze data from five broad-band stations across Central Europe. We find that the likely usable epicentral distance range for P-wave receiver functions on Mars lies between \(35^{\circ}\) and the core shadow, and can be extended to more than \(150^{\circ}\) by also using the PP-phase. Comparison to models for the spatial distribution of Martian seismicity indicates that sufficient seismicity should occur within the P-wave distance range around InSight within the nominal mission duration to allow for the application of our method. Apparent P-wave incidence angles are derived from the amplitudes of vertical and radial receiver functions at the P-wave onset within a range of period bands, up to 120 s. The apparent incidence angles are directly related to apparent S-wave velocities, which are inverted for the subsurface S-wave velocity structure via a grid search. The veracity of the forward calculated receiver functions and apparent S-wave velocities is ensured by benchmarking various algorithms against the Instaseis synthetics. Results indicate that apparent S-wave velocity curves provide valuable constraints on crustal thickness and structure, even without any additional constraints, and considering the location uncertainty and limited data quantity of InSight. S-wave velocities in the upper half of the crust are constrained best, but if reliable measurements at long periods are available, the curves also provide constraints down to the uppermost mantle. Besides, it is demonstrated that the apparent velocity curves can differentiate between crustal velocity models that are indistinguishable by other methods.  相似文献   

18.
Asteroid 4 Vesta is the only preserved intact example of a large, differentiated protoplanet like those believed to be the building blocks of terrestrial planet accretion. Vesta accreted rapidly from the solar nebula in the inner asteroid belt and likely melted due to heat released due to the decay of 26Al. Analyses of meteorites from the howardite-eucrite-diogenite (HED) suite, which have been both spectroscopically and dynamically linked to Vesta, lead to a model of the asteroid with a basaltic crust that overlies a depleted peridotitic mantle and an iron core. Vesta??s crust may become more mafic with depth and might have been intruded by plutons arising from mantle melting. Constraints on the asteroid??s moments of inertia from the long-wavelength gravity field, pole position and rotation, informed by bulk composition estimates, allow tradeoffs between mantle density and core size; cores of up to half the planetary radius can be consistent with plausible mantle compositions. The asteroid??s present surface is expected to consist of widespread volcanic terrain, modified extensively by impacts that exposed the underlying crust or possibly the mantle. Hemispheric heterogeneity has been observed by poorly resolved imaging of the surface that suggests the possibility of a physiographic dichotomy as occurs on other terrestrial planets. Vesta might have had an early magma ocean but details of the early thermal structure are far from clear owing to model uncertainties and paradoxical observations from the HEDs. Petrological analysis of the eucrites coupled with thermal evolution modeling recognizes two possible mechanisms of silicate-metal differentiation leading to the formation of the basaltic achondrites: equilibrium partial melting or crystallization of residual liquid from the cooling magma ocean. A firmer understanding the plethora of complex physical and chemical processes that contribute to melting and crystallization will ultimately be required to distinguish among these possibilities. The most prominent physiographic feature on Vesta is the massive south polar basin, whose formation likely re-oriented the body axis of the asteroid??s rotation. The large impact represents the likely major mechanism of ejection of fragments that became the HEDs. Observations from the Dawn mission hold the promise of revolutionizing our understanding of 4 Vesta, and by extension, the nature of collisional, melting and differentiation processes in the nascent solar system.  相似文献   

19.
Chemistry,accretion, and evolution of Mars   总被引:1,自引:0,他引:1  
The high FeO concentrations measured by VIKING for the Martian soils correspond to all probability to a FeO-rich mantle. In general, the VIKING XRF-data indicate a mafic crust with a considerably smaller degree of fractionation compared to the terrestrial crust.In recent years evidence has been collected which points towards Mars being the parent body of SNC-meteorites and, hence, these meteorites have become a valuable source of information about the chemistry of Mars. Using element correlations observed in SNC-meteorites and general cosmochemical constraints, it is possible to estimated the bulk composition of Mars. Normalized to Si and Cl, the mean abundance value for the elements Ga, Fe, Na, P, K, F, and Rb in the Martian mantle is found to be 0.35 and thus exceeds the terrestrial value by about a factor of two. Aside pressure effects and the H2O poverty, the high P and K content of the Martian mantle may lead to magmatic processes different from those on Earth.The composition of the Earth's mantle can successfully be described by a two component model. Component A: highly reduced and almost free of all elements more volatile than Na; component B: oxidized and containing all elements in Cl-abundances including volatile elements. The same two components can be used as building blocks for Mars, if one assumes that, contrary to the inhomogeneous accretion of the Earth, Mars accreted almost homogeneously. The striking depletion of all elements with chalcophile character indicates that chemical equilibrium between component A and B was achieved on Mars which lead to the formation of significant amounts of FeS which, on segregation, extracted the elements according to their sulphide-silicate partition coefficients. While for the Earth a mixing ratio AB = 8515 was derived, the Mars ratio of 6040 reflects the higher concentrations of moderately volatile elements like Na, K, and sulphur on Mars. A homogeneous accretion of Mars could also explain the obvious low abundances of water and primordial rare gases.  相似文献   

20.
In this review paper I address the current knowledge of the formation of Mars, focusing on its primary constituents, its formation time scale and its small mass compared to Earth and Venus. I argue that the small mass of Mars requires the terrestrial planets to have formed from a narrow annulus of material, rather than a disc extending to Jupiter. The truncation of the outer edge of the disc was most likely the result of giant planet migration, which kept Mars’ mass small. From cosmochemical constraints it is argued that Mars formed in a couple of million years and is essentially a planetary embryo that never grew to a full-fledged planet. This is in agreement with the latest dynamical models. Most of Mars’ building blocks consists of material that formed in the 2 AU to 3 AU region, and is thus more water-rich than that accreted by Earth and Venus. The putative Mars could have consisted of 0.1 % to 0.2 % by mass of water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号