首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
民用飞机为获得型号合格证,应按照有关结冰适航规章条款进行结冰适航验证,结冰风洞试验是获取临界冰形的有效途径。本文以Y12F飞机结冰风洞试验实际工程过程为例,总结与分析了气动除冰飞机结冰风洞试验的模型设计、气动除冰套模拟、试验状态转换、试验流程、冰形测量等关键技术,并给出代表性试验结果。试验结果表明:在典型最大结冰条件下,除冰套工作正常,除冰套循环工作期间正常除冰;除冰套工作间歇,机翼前缘结冰表现为前缘形成较为光滑、厚度约为5~6mm的冰帽,上翼面产生1道高度为3~4mm的冰脊,下翼面形成3道2~4mm的冰脊。  相似文献   

2.
本文首先简介了国内外结冰研究的简况。接着介绍了运七(Y-7)飞机全模结冰模拟试验的一般情况,给出了结冰模拟对运七飞机纵向气动特性影响的基本结果并进行了初步讨论,最后就此得出了几点结论。  相似文献   

3.
鸭式旋翼/机翼(CRW)飞机是一种新型复合升力飞机.旋转机翼的焦点位置、迎风面积随旋转机翼方位角剧烈变化,同时旋转机翼气动力受前机身上洗流影响明显,综合影响使得旋转机翼在旋转状态下全机气动特性随旋转机翼方位角剧烈变化.通过风洞试验对纵向气动特性进行了研究,结果表明:旋转机翼的升阻特性变化对全机升阻及俯仰特性的影响以振荡的形式表现,频率为旋转机翼的旋转频率,幅值都在固定翼状态稳态值的5%以上.  相似文献   

4.
继研究结冰模拟对Y-7飞机纵向特性影响之后,本文又介绍了结冰模拟对Y-7飞机横向特性及舵面效率的影响。在讨论其试验条件及结果之基础上得出的结论对结冰条件下的飞行具有重要意义。  相似文献   

5.
霜状结冰及其对机翼气动特性影响的数值模拟   总被引:1,自引:0,他引:1  
在霜状冰结冰过程及结冰对机翼气动特性影响的数值模拟中,基于壁面函数法引入了粗糙度影响,结合欧拉坐标系下空气-过冷水滴两相流动控制方程的计算,文中以NACA0012为对象进行了霜状冰结冰过程的数值模拟,并把计算得到的冰形与试验数据及国外的结冰预测软件的结果进行了对比.本文同时考察了结冰对机翼气动特性的影响,结果表明结冰后最大升力系数降低了26%,失速攻角降低了3°,并且阻力系数也有了增加.  相似文献   

6.
气动除冰类飞机结冰风洞试验适航审定技术   总被引:1,自引:0,他引:1       下载免费PDF全文
民用飞机为获得型号合格证,应按照有关结冰适航规章条款进行结冰适航验证,如何解读适航条款要求并制定有效的符合性验证流程,是进行适航合格审定的关键。本文以Y12F气动除冰飞机结冰风洞试验的实际工程为例,以相关结冰适航文件为基础,结合国际最新的飞机结冰研究成果,研究并总结了目标试验状态设定、设备选择、试验状态的等效转换、模型研制、风洞试验等适航审定要求和技术。构建的结冰风洞试验适航审定方法,有效地指导完成了Y12F飞机除冰系统的适航验证工作,完成中国民用航空局(CAAC)和美国联邦航空管理局(FAA)同时审查,为获得CAAC和FAA型号合格证奠定良好基础。  相似文献   

7.
介绍了机翼摇滚低速风洞试验技术,并对试验装置、试验方法、数据采集等进行了描述。重点讨论了一种歼击机模型在气动中心低速所4m×3m风洞进行的机翼摇滚风洞试验的典型结果。最后对形成机翼摇滚的机理进行了探讨与分析。  相似文献   

8.
电热除冰传热特性的结冰风洞实验研究   总被引:4,自引:0,他引:4       下载免费PDF全文
利用结冰风洞设备和电加热除冰装置,采用实验的方法研究了不同加热模式、冷却时间、加热功率和冰脱落对传热特性的影响.研究表明:设置合理的冷却时间和加热功率,采用高功率的周期性加热模式比采用低功率的连续性加热模式更优越,不仅除冰时间更少,而且能量消耗也更少,从而为电热除冰系统加热模式的选取和传热特性的优化提供了实验依据.  相似文献   

9.
基于飞机结冰探测器安装要求,通过三维数值仿真,模拟了机头表面流场和水滴撞击特性.通过标定水滴遮蔽区和浓度增加区引入危险位置点的概念,对结冰探测器的安装位置进行了分析,模拟了安装位置处结冰探测器探头表面和飞机主要迎风部件表面的水滴收集特性和结冰特性,并进行对比分析.分析结果表明探头表面的最大收集系数、结冰强度和结冰程度等...  相似文献   

10.
为了研究战斗机的机翼摇滚特性 ,运用风洞试验和数值模拟手段 ,对一典型三角翼布局开展了研究工作。风洞试验研究探讨了不同攻角和初始角位移等因素对机翼摇滚特性的影响 ;运用非定常建模技术建立了机翼摇滚过程中的滚转力矩系数的表达式并进行了机翼摇滚的数值模拟 ,预测了发生机翼摇滚的临界攻角和轴承阻尼系数对摇滚特性的影响。最后对机翼摇滚的发展、稳定阶段的能量转换进行了讨论。研究结果表明机翼摇滚的数值模拟与试验结果具有较好的一致性。  相似文献   

11.
设计了一种新型的自由机翼。与常规固定机翼和旋翼不同,自由机翼通过一根展向旋转轴固定在机身上,可在俯仰轴线上自由旋转。在飞行时,相对气流的平衡迎角保持稳定不变。即使受到如突风等外界扰动影响,自由翼也能在扰动消除后很快自动恢复到平衡迎角,避免了常规固定机翼的失速问题。通过风洞试验,对带升降副翼控制的自由翼气动特性也进行了实验研究,验证了位于自由翼后缘的升降副翼可有效地控制自由翼相对气流的平衡迎角。  相似文献   

12.
设计研制了一种飞翼布局的柔性翼和刚性翼微型飞行器,并在风洞中研究了两种微型飞行器在定常风和水平阵风作用下的气动特性,给出了柔性翼和刚性翼微型飞行器气动特性的差别.研究结果表明:不论是在定常风情况下,还是在水平阵风环境下,柔性翼的气动特性要优于刚性翼结构,柔性翼具有延迟失速和缓和阵风影响的能力,有利于稳定飞行.PIV测量结果表明:由于柔性翼的变形使刚性翼和柔性翼翼面上的流态不同,从而使微型飞行器的气动特性发生改变.  相似文献   

13.
提出了一种将柔性翼和刚性翼相结合的柔性-刚性混合翼微型飞行器新概念布局型式,通过与刚性翼微型飞行器的风洞对比试验研究了该新概念布局的气动特性.在此基础上,进行了柔性-刚性混合翼微型飞行器试验原理样机的飞行试验验证.风洞试验和飞行试验研究结果表明:柔性-刚性混合翼微型飞行器的新概念布局是可行的;与刚性翼微型飞行器相比而言,柔性-刚性混合翼微型飞行器具有更好的气动特性,对解决微型飞行器抗风稳定飞行问题是有效的.  相似文献   

14.
以高速风洞气动力测量为研究手段,开展了弹舱开启对飞翼布局飞机气动特性影响及其流动控制试验研究.试验结果表明,对于飞翼布局飞机,弹舱开启主要影响飞机阻力特性,巡航状态下,弹舱开启后使得全机阻力增加60%~110%,Ma=0.8时全机升阻比降低34%.通过在弹舱前缘安装扰流片,对弹舱腔口剪切层施加流动控制,巡航状态下弹舱开启附加阻力最多降低20%,Ma=0.8时全机升阻比提高12.6%.  相似文献   

15.
采用光固化快速成型技术(SL)加工基于气动/结构耦合分析的六套不同机翼优化构型的轻质F4模型,在0.6m跨超声速风洞完成了马赫数0.6~0.85范围内的气动力测量试验.试验结果表明,采用气动/结构耦合优化设计的代号为6#的轻质F4模型升力特性与国外结果较接近,与机翼三维变形的事实吻合,验证了采用的气动/结构耦合优化设计方法基本可行,为探索模型静气动弹性风洞试验数据修正方法提供了参考.  相似文献   

16.
积冰改变了翼型的气动外形和绕流流场,使得机翼气动载荷分布产生动态变化.蒙皮作为气动载荷的承受及传递对象,会在气动载荷的动态作用下产生不同的振动响应.以某大弯度翼型为研究对象,提取了典型积冰增长过程中尾缘上下蒙皮振动特征,采用载荷谱方法研究积冰全历程的蒙皮振动及流场变化特性,并分析了不同材质的蒙皮在结冰不同阶段的响应及结...  相似文献   

17.
对后缘拐折翼的气动特性进行了风洞试验和水洞试验研究。结果表明,机翼后缘拐折处的集中涡有吸引和固定翼面涡的作用,合适的拐折会得到明显的气动收益,在大攻角时,会使升力增加,俯仰力矩特性得到改善;内拐折的深度大,对大攻角气动特性有利;在带边条时,合适的拐折点最好在边条前缘延长线的外侧附近。  相似文献   

18.
为验证所提出的智能材料结构在柔性变后缘机翼气动特性研究中应用的可行性,在跨声速风洞中运用模型变形视频测量技术测量了机翼后缘的偏转变形量,并记录了偏转变形的动态过程。同时测量了上翼面的压力分布。实验马赫数0.4~0.8,模型迎角0°~6°。分析了来流条件对结构变形能力的影响。结果表明:跨声速条件下,智能材料结构在气动载荷作用下能够驱动机翼后缘偏转变形。驱动力一定时,变形能力受到马赫数和迎角等因素影响。马赫数增加会减弱智能材料结构的变形能力,导致变形速度减小,后缘偏转角降低。迎角的影响较为复杂,且与马赫数的影响相互耦合,马赫数越高迎角的影响越强。最后,通过对后缘压力分布形态的分析得出,变形后后缘是否发生流动分离是影响智能材料结构变形能力的关键因素。  相似文献   

19.
论述了扑翼飞行器扑动升力产生的基本原理,提出采用机翼开孔的方式获得扑动升力的方法.通过风洞试验研究了翼面开孔对机翼气动特性的影响,结果表明机翼开孔可以有效获得扑动升力,降低扑动功耗,但会损失一定的推力.采用正交实验方法对风洞实验进行设计,构建机翼气动力关于实验参量的二次响应面方程,并通过响应面方程对开孔机翼的气动特性进行评价.结果表明所设计的开孔机翼最大起飞重量与无孔机翼相当,但其低速飞行能力较好,功率消耗较少,有望实现悬停飞行.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号