首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 703 毫秒
1.
本文以本生型甲烷/空气层流预混火焰为研究对象,研究了背景纹影技术在层流轴对称火焰温度场测量中的应用。考虑到背景尺度对窗口和相机参数的限制问题,采用了多尺度小波噪点背景。比较各类运动图像处理技术的特点,选用变分光流法获取光线穿过火焰后的偏转角。搭建实验台并进行背景纹影火焰测温实验,实验中发现,在选用多尺度小波噪点背景的情况下,由变分光流算法获得的像素位移分布图的噪声小于同等条件下由互相关算法得到的结果。最后,假设火焰呈轴对称分布,结合Gladstone-Dale公式与理想气体状态方程分别获得了甲烷火焰当量比为1.06和0.83这2种实验条件下的温度场,所获得的温度分布与Raman-LIF法的测温结果相比,趋势基本一致。  相似文献   

2.
层流燃烧速度是确定燃烧传播模型和验证化学反应机理的关键参数。搭建了本生灯实验系统和纹影实验系统用于探究甲烷预混层流燃烧特性,通过本生灯法和纹影技术测得了甲烷/氮气/空气的层流燃烧速度和火焰外部流场,并且探究了当量比及氮气掺混对层流燃烧速度和火焰外部流场的影响。研究发现,当量比对甲烷层流预混火焰燃烧特性有着重要的影响,随着当量比的增加,层流燃烧速度先增大后减小,锥形火焰高度先减小后增加,火焰外部流场开始逐渐趋于稳定;氮气掺混对层流燃烧速度起着降低的作用,且掺混的氮气越多,层流燃烧速度降低幅度越大;掺混氮气后火焰高度增加,但是火焰外部流场变得更加紊乱,难以稳定。  相似文献   

3.
OH和CH2O平面激光诱导荧光(PLIF)同时成像技术在研究火焰结构和燃烧反应中间产物二维分布等方面能够发挥重要作用。OH的分布被用来表征火焰反应区的结构,而CH2O的分布则被用来显示火焰预热区的分布。利用OH和CH2O PLIF同时成像技术研究了甲烷/空气部分预混火焰的结构。从实验系统、光路调节、时序同步、OH A-X(1,0)扫谱、数据采集和处理等方面讨论了PLIF同时成像技术的实验方法。实验结果表明,OH和CH2O PLIF同时成像能够分别呈现甲烷/空气部分预混火焰反应区和预热区不同形状的瞬时结构;由于反应区在相邻位置的结合,在火焰中能够局部生成新的分裂的预热区。  相似文献   

4.
在来流总温1085K、进口马赫数2.0下开展了煤油燃料超声速燃烧试验,使用高速摄像观测了火焰的形态和结构,采用平面激光诱导荧光技术(PLIF)观测了煤油和OH的分布,结合数值模拟结果分析了燃烧室的火焰稳定机制。测量结果显示:燃烧反应主要发生在射流的下游区域和凹槽区域内,随着燃料当量比的增加,火焰传播角度及火焰向主流的穿透高度增加。数值模拟结果与实验测量吻合较好。火焰稳定机制分析显示:液态煤油喷入燃烧室内,主要分布在下壁面附近的流场中,燃烧产生的高温燃烧产物通过凹槽剪切层与回流区之间的相互作用,进入凹槽并为剪切层中的空气-煤油混合气体提供稳定的热量和中间产物,使得火焰基底能够稳定在剪切层内,并以相对固定的角度向主流流场中传播。  相似文献   

5.
CH4/Air反扩散射流火焰多组分同步PLIF诊断   总被引:1,自引:0,他引:1       下载免费PDF全文
多组分同步平面激光诱导荧光技术在研究火焰结构和燃烧反应中间产物二维分布等方面有着重要作用。为了研究CH4-Air反扩散射流火焰,搭建了OH/CH2O/丙酮(Acetone)多组分同步平面激光诱导荧光实验系统。系统由2套激光器、2部ICCD相机、1组时序控制器以及光学系统构成。通过对不同组分物质分子有效激发策略、时序控制方法以及双ICCD成像技术进行了分析,最终实现了对火焰反应区、预热区以及燃料分布区域等火焰结构信息瞬态测量及可视化。基于该实验系统,对反扩散射流火焰进行了实验研究。研究结果表明,反扩散射流火焰形式既不同于传统的预混火焰,也不同于常规的扩散火焰,更多表现为部分预混的扩散火焰;较之OH*化学发光成像,多组分平面激光诱导荧光结构更能准确认识火焰的基本形态和燃烧模式,在基础燃烧和工业研究中都具有重要的应用价值。  相似文献   

6.
热声不稳定问题是航空航天动力装置发展中的难题之一,针对预混燃烧火焰的热声不稳定机理研究是解决实际发动机热声振荡难题的必经之路。采用丙酮/CH2O双组分PLIF同步测量技术对横向声波激励下的预混火焰特性进行了研究,获得了横向声波激励预混燃烧火焰中的未燃区/预热区分布变化情况。实验结果表明:随着激励声波声压级的增大和激励声波频率的减小,未燃区/预热区形貌的变化逐渐增强;同时,随着激励声波相位的变化,未燃区/预热区形貌呈周期性变化。对丙酮PLIF图像进行边界提取,获取了不同声波频率、声压级条件下的未燃区抬举高度、扩散面积。利用丙酮/CH2O双组分PLIF同步测量成功捕捉到典型声波频率、声压级下的火焰形貌演化过程,并分析了该典型工况下的火焰熄灭现象及其机制。  相似文献   

7.
强声波扰动下旋流流场的动态特征对于理解旋流火焰的非线性响应特性非常重要。基于超高重复频率脉冲串式激光器高速粒子示踪技术测量了强声激励下旋流火焰的动态流场,研究了旋流流场周期性涡结构和流场-火焰动态相互作用。周期性声波扰动会在旋流火焰内剪切层和外剪切层中引起固有涡结构。发现外部涡环在卷曲火焰锋面和改变火焰热量释放速率中起主要作用,而内部涡环分布在火焰根部并会影响中心回流区速度分布。定量提取了声诱导涡环的轨迹、涡量、环量、尺寸、出口速度以及加速度之间关系,发现强声激励下的出口速度和加速度决定了外部涡环的形成和脱落过程。  相似文献   

8.
采用激波风洞-激波管组合设备对预混的碳氢燃料——空气混合物的点火与超声速燃烧进行了研究。为缩短碳氢燃料-空气混合物的点火延迟时间,通过激波风洞喷管入口与接触面之间的激波反射对经过雾化与气化的碳氢燃料(汽油)进行预热;此外,由燃烧驱动激波管产生的高温燃气作为引导火焰点燃激波风洞产生的预混与预热的超声速碳氢燃料——空气混合物。采用纹影系统对超声速可燃气流中的火焰传播进行流场显示。实验结果表明,上述方法可将碳氢燃料——空气混合物的点火延迟时间缩短至小于0.2ms,同时还得出了火焰相对于超声速可燃气流的传播速度。  相似文献   

9.
利用Hencken型平面火焰燃烧器搭建携带流反应系统,研究了不同湍流强度下煤粉颗粒群的着火及燃烧特性。煤粉被一次风送入温度、氧含量(本文所称"氧含量"是指氧的摩尔分数,mole fraction)可调节的高温烟气中形成稳定的射流火焰,利用OH平面激光诱导荧光技术(OH-Planar Laser-Induced Fluorescence,OH-PLIF)观测煤粉射流火焰着火、群燃等阶段的瞬态结构,基于对火焰图像的处理探究煤粉颗粒群的着火及燃烧特性。OH-PLIF的测量结果表明,在煤粉射流火焰的上游,射流外围区域的煤粉首先发生脱挥发分并着火,外围已燃的煤粉释放出大量热量并不断向射流内部传递,促进了射流内部区域煤粉颗粒群挥发分的析出。在高速一次风的卷吸及扰动作用下,析出的挥发分与氧之间不断扩散、混合,燃烧的OH锋面逐渐向射流中心区域延伸并连接成片,出现挥发分群燃火焰。实验结果表明:层流状态下,煤粉射流火焰窄而明亮;随着一次风湍流强度的增强,射流中煤粉颗粒的扩散运动变得剧烈,火焰形态发生变化,着火距离显著缩短。本文定量地研究了不同湍流强度下背景烟气温度(1200~1700 K)、烟气氧含量(10%~30%)以及一次风氧含量(5%~45%)对煤粉颗粒群着火延迟的影响规律。随着背景烟气温度、送风氧含量的升高,着火延迟时间逐渐缩短,但存在阈值现象,一旦背景烟气温度或送风氧含量超出某一阈值,其对煤粉颗粒群着火延迟的影响变弱,控制煤粉颗粒群着火行为的主导因素随之发生改变。  相似文献   

10.
为分析新型叶间燃烧室的燃烧性能,以叶间燃烧室试验模型为研究对象,用Realizable k-ε湍流模型、非预混PDF 燃烧模型,数值模拟了燃烧流场特性。燃油颗粒大部分在环形腔顶部区域蒸发混合,火焰在环形腔底部连通,形成旋流燃烧,涡轮径向斜槽内出现温度较高的火焰区。涡轮径向斜槽结构以及主流的卷吸作用对燃烧产物与一次气流的掺混存在影响。贫油燃烧方式工况燃烧性能较优,富油燃烧方式工况的径向平均出口温度线型较好。计算结果与相同操作条件下的试验结果符合较好。  相似文献   

11.
当带红外成像制导系统的飞行器在稠密大气层内做高超声速飞行时,必须采取主动冷却方式防止严重气动加热造成的窗口材料热畸变以及复杂流场造成的气动光学畸变。本文根据成像窗口周围流动具有受高超声速钝头体绕流和气膜冷却结构(即背面为空腔的超声速后台阶)共同作用的特点,在 KD-01高超声速炮风洞中开展了带气膜冷却结构的高超声速平板在不同前缘形状下表面传热特性的试验研究,测量了 Ma8来流条件下喷缝下游表面传热系数,试验获得了2种前缘形状的带气膜冷却结构的高超声速平板喷缝周围瞬态流场 NPLS 图像。通过分析试验数据,得出以下结论:对于带气膜冷却结构(气膜不工作状态)的高超声速平板,模型前缘的形状对喷缝下游区域的表面热流整体分布有明显影响,在钝前缘情形下,表面热流分布接近相同前缘形状的平板边界层为层流状态时的表面热流分布;在尖前缘情形下,表面热流分布则表现出从层流边界层状态向充分发展湍流边界层状态变化的特性;喷缝下游分离和再附区表面传热特性和超声速后台阶流动类似,取决于喷缝上缘处边界层相对厚度。  相似文献   

12.
为了探究电动机在脉宽调(Pulse width modulation,PWM)变频器供电下的传热特性,近一步揭示变频参数(调制比)对电动机温升分 布的影响特征,以一台采用PWM变频器供电下55 kW驱动用感应电机为例,基于流体力学及传热学基本原理,结合电机通风结构特征,建立外部包裹有空气域的三维流热耦合求解域模型,并采用有限体积元法对电机内的温度场进行了数值研究。此外,针对PWM不同调制比控制条件下电动机全域内的传热特性进行了对比分析,结果表明:两个不同调制比控制条件下电机求解域 内各主要部件温升分布趋势大致相同;径向上,转子部分温升较高,在气隙位置温升出现阶跃式变化,定子部分温升较低;轴向上,电机各部分近风端温升较低,远风端温升较高;周向上,定子轭部温升呈波浪式变化。  相似文献   

13.
空天飞行器再入过程中关键热结构的热分析   总被引:1,自引:0,他引:1  
可重复使用的空天飞行器再入过程中关键热结构的热分析可为结构设计、选材等提供参考依据。本文针对全C/SiC复合材料襟翼结构,考虑传导与辐射耦合换热,建立了其再入过程热分析的有限元模型。由有限元计算结果的分析发现:辐射换热在整个温度场中起主导作用,并且对于采用防热-结构一体化设计的可重复使用的空天飞行器,C/SiC是比较理想的结构材料。  相似文献   

14.
板翅式及管翅式换热器气流湍流特性研究   总被引:1,自引:1,他引:0       下载免费PDF全文
在连续式回流风洞中,为了控制风洞气流的总温,平衡风扇或压缩机做功产生的热量,需要在风洞试验段上游布置换热器。风洞换热器除了需要提高换热效率、降低压力损失之外,其对来流的整流效果及自身所引发的湍流流动也会对风洞试验段流场品质造成影响。在0.55 m×0.40 m低噪声航空声学风洞中,使用热线风速仪对椭圆管翅片式及板翅式换热器的下游湍流度分布进行了试验研究,获得了不同构型换热器的压力损失特性。采用数值模拟方法,对不同构型热交换器的再生湍流度进行了模拟和分析。研究结果表明,椭圆管翅片式与板翅式换热器对湍流流动的整流效果有明显差异。椭圆管翅片式换热器对降低湍流度、抑制其不均匀分布的效果要优于板翅式换热器,板翅式换热器对湍流度横向分量的整流效果较好,板翅式换热器的再生湍流度约为管翅式换热器的30%~40%。研究结果可为高流场品质要求的大型连续式风洞换热器的选型及优化提供参考。  相似文献   

15.
大型空气加热器易发生燃烧不稳定现象,造成加热器不能按预想状态工作,甚至失效.由于难以通过试验获得加热器燃烧室内部的精确参数,因此数值仿真是预测燃烧不稳定性的重要手段.通过对燃烧室内部燃烧-声学解耦的方式,分别计算火焰对声学扰动的响应和声学系统在热源扰动下的响应,将声学扰动下的燃烧响应表征为火焰传递函数,最终可获得燃烧室...  相似文献   

16.
研制了一种包含球冠测热体和热防护罩的球头水卡量热计,建立了球冠测热体与测试水的流热耦合模型,基于该模型和热流标定试验分析了水道内水温分布特点及其对热流测量的影响。结果表明:水道内测试水离受热面越近,水温越高,且沿水道径向的温度梯度越大;测试水质量流率越小,沿水道轴向和径向的温度梯度越大,热流计算结果因水温测点位置不同的差异就越大。设计水卡时应使热电偶尽可能远离受热面并靠近水道中轴线;使用前需进行热流标定,确定合适的测试水质量流率范围,获得准确的修正系数。试验结果表明,该球头水卡量热计能够应用于长时间、高精度、多状态的驻点热流测量。  相似文献   

17.
随着大型连续式高速风洞运行功率和精细化测试要求的提高,对风洞热交换器性能提出了越来越高的要求,集中体现在换热压损性能、温度场均匀性和气流扰动特性3个方面。结合近年研究成果,对大型连续式高速风洞热交换器设计中的关键技术及研究成果进行了综述。分析了风洞热交换器的需求特点,总结了影响各种性能的主要因素。介绍了高效低压损设计技术、温度场均匀性控制技术和气流扰动控制技术,给出了热交换器换热效率和压力损失综合权衡的设计原则,阐述了换热芯体排列方式、冷却水流量及进水方式、热交换器段截面形状等对温度场均匀性的影响,以及来流条件和热交换器结构对气流扰动的特性。  相似文献   

18.
搭建了基于激光多普勒测速仪(LDV)的冲击射流火焰流场实验平台,开发了固态粒子发生器、粒子回收装置和精密位移机构等装置,对单孔喷嘴(功率200W)、同轴喷嘴(功率1200W)的自由射流火焰流场和冲击射流火焰流场进行高精度测量,测量数据具有较高的准确性和可重复性。在冲击射流模式下,利用多个位置点的平均速度分量测量值进行流场重构,获得了冲击射流火焰流场基本特征。实验发现:在靠近冲击壁面区域距中心滞止点约1倍喷嘴直径处出现水平方向速度峰值,该点处可能会形成短冲击距离下换热强度的第二次峰值。在同轴射流工况中,外环同轴射流和中心射流间存在一个内部剪切混合层:在自由射流火焰模式下,该混合层随着射流的发展而耗散;在冲击射流火焰模式下,由于受到滞止区的作用,混合层向外扩张。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号