首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work presents a single-scan-processing approach to the problem of detecting and preclassifying a radar target that may belong to different target classes. The proposed method is based on a hybrid of the maximum a posteriori (MAP) and Neyman-Pearson (NP) criteria and guarantees the desired constant false alarm rate (CFAR) behavior. The targets are modeled as subspace random signals having zero mean and given covariance matrix. Different target classes are discriminated based on their different signal subspaces, which are specified by their corresponding projection matrices. Performance is investigated by means of numerical analysis and Monte Carlo simulation in terms of probability of false alarm, detection and classification; the extra signal-to-noise power ratio (SNR) necessary to classify once target detection has occurred is also derived.  相似文献   

2.
An analysis of the probability of target detection for a clutter map CFAR using digital exponential filtering has been performed. General performance equations are derived. The probability of detection versus signal-to-noise ratio is plotted for a false alarm probability of 1.E-06 for several weight values. The CFAR loss is plotted for a detection probability of 0.9 and false alarm probabilities of 1.E-06 and 1.E-08.  相似文献   

3.
GLRT subspace detection for range and Doppler distributed targets   总被引:7,自引:0,他引:7  
A generalized likelihood ratio test (GLRT) is derived for adaptive detection of range and Doppler-distributed targets. The clutter is modeled as a spherically invariant random process (SIRP) and its texture component is range dependent (heterogeneous clutter). We suppose here that the speckle component covariance matrix is known or estimated thanks to a secondary data set. Thus, unknown parameters to be estimated are local texture values, the complex amplitudes and Doppler frequencies of all scattering centers. To do so, we use superresolution methods. The proposed detector assumes a priori knowledge on the spatial distribution of the target and has the precious property of having a constant false alarm rate (CFAR) with the assumption of a known speckle covariance matrix or by the use of frequency agility.  相似文献   

4.
The performance of distributed constant false alarm rate (CFAR) detection with data fusion both in homogeneous and nonhomogeneous Gaussian backgrounds is analyzed. The ordered statistics (OS) CFAR detectors are employed as local detectors. With a Swerling type I target model, in the homogeneous background, the global probability of detection for a given fixed global probability of false alarm is maximized by optimizing both the threshold multipliers and the order numbers of the local OS-CFAR detectors. In the nonhomogeneous background with multiple targets or clutter edges, the performance of the detection system is analyzed and its performance is compared with the performance of the distributed cell-averaging (CA) CFAR detection system  相似文献   

5.
Matched subspace CFAR detection of hovering helicopters   总被引:4,自引:0,他引:4  
A constant false alarm rate (CFAR) strategy for detecting a Gaussian distributed random signal against correlated non-Gaussian clutter is developed. The proposed algorithm is based on Scharf's matched subspace detector (MSD) and has the CFAR property with respect to the clutter amplitude probability density function (apdf), provided that the clutter distribution belongs to the compound-Gaussian family and the clutter covariance matrix is known to within a scale factor. Analytical expressions of false alarm and detection probabilities are derived. An application to the problem of detecting hovering helicopters against vegetated ground clutter is reported  相似文献   

6.
OS-CFAR theory for multiple targets and nonuniform clutter   总被引:1,自引:0,他引:1  
The performance of a cell averaging constant false-alarm rate (CA-CFAR) detector degrades rapidly in nonideal conditions caused by multiple targets and nonuniform clutter. The ordered-statistic CFAR (OS-CFAR) is an alternative to the CA-CFAR. The OS-CFAR trades a small loss in detection performance relative to the CA-CFAR in ideal conditions for much less performance degradation in nonideal conditions. A formula is given for the detection probability of the OS-CFAR when there are multiple Swerling I targets in the CFAR window, and a formula is given for the probability of false alarm in nonuniform Raleigh clutter  相似文献   

7.
Polarization diversity detection in compound-Gaussian clutter   总被引:1,自引:0,他引:1  
We present the problem of polarization diversity detection in compound-Gaussian clutter with unknown covariance matrix. To this end we assume that a set of secondary data, free of signal components and with the same covariance structure of the cell under test, is available. Due to the lack of a uniformly most powerful (UMP) detector we resort to a design procedure based upon the Rao and the Wald tests. Specifically we first derive the Rao and the Wald tests assuming that the covariance matrix is known, and then we substitute into the derived decision rules a suitable estimate of the clutter covariance. Interestingly, the newly proposed detectors share the constant false alarm rate (CFAR) property with respect to the texture statistical characterization. Moreover simulation results have shown that the Wald test based detector ensures a performance level higher than the Rao test. We have also conducted a further performance analysis, in the presence of real clutter data and in comparison with the previously proposed generalized likelihood ratio test (GLRT) based receivers, which highlights that, in general, the Wald test receiver outperforms its counterparts. Finally, since the newly proposed decision rules as well as the previously designed GLRTs do not ensure the CFAR property with respect to the clutter covariance matrix, we have developed a sensitivity analysis on the probability of false alarm (P/sub fa/), based on simulated clutter with covariance matrix estimated from real radar data. The results have shown that (P/sub fa/) is only slightly affected by variations in the clutter correlation properties and hence the CFARness is substantially achieved.  相似文献   

8.
Coherent signal detection in non-Gaussian interference is presently of interest in adaptive array applications. Conventional array detection algorithms inherently model the interference with a multivariate Gaussian random vector. However, non-Gaussian interference models are also under investigation for applications where the Gaussian assumption may not be appropriate. We analyze the performance of an adaptive array receiver for signal detection in interference modeled with a non-Gaussian distribution referred to as a spherically invariant random vector (SIRV). We first motivate this interference model with results from radar clutter measurements collected in the Mountain Top Program. Then we develop analytical expressions for the probability of false alarm and the probability of detection for the adaptive array receiver. Our analysis shows that the receiver has constant false alarm rate (CFAR) performance with respect to all the interference parameters. Some illustrative examples are included that compare the detection performance of this CFAR receiver with a receiver that has prior knowledge of the interference parameters  相似文献   

9.
文章提出了 1种基于双边截断的双参数海上风电站 SAR图像 CFAR检测器 DTCS-TPCFAR,目的是提高在具有多个目标海上区域和石油泄漏区域等环境下对海上风电站的检测性能。DTCS-TPCFAR所提出的双边截断杂波的方法,能够同时消除高强度和低强度异常值的干扰,同时保留真实的杂波样本。通过使用最大似然估计计算双边截断后样本的均值和标准差,然后通过这 2个参数估计值计算出截断阈值,最后再结合指定的虚警率(Probability of False Alarm,PFA)来对测试单元(Test Cell,TC)进行判断,完成最终的目标检测。这也是首次将 CFAR检测器用于检测海上风电站。文章通过 Sentinel-1数据集来验证该方法的有效性。实验结果表明,文章所提出的算法在相同指定虚警率下,具有更高的检测率(Detection Rate,DR)和更低的误报率(False Alarm Rate,FAR)。  相似文献   

10.
We study the design of constant false-alarm rate (CFAR) tests for detecting a rank-one signal in the presence of background Gaussian noise with unknown spatial covariance. We look at invariant tests, i.e., those tests whose performance is independent of the nuisance parameters, like the background noise covariance. Such tests are shown to have the desirable CFAR property. We characterize the class of all such tests by showing that any invariant decision statistic can be written as a function of two basic statistics which are in fact the adaptive matched filter (AMF) statistic and Kelly's generalized likelihood ratio statistic. Further, we establish an optimum test in the limit of low signal-to-noise ratio (SNR), the locally most powerful invariant (LMPI) test. We also derive the bound for the probability of detection of any invariant detector, at a fixed false-alarm rate, and compare the LMPI and the published detectors (Kelly and AMF) to it  相似文献   

11.
韦北余  朱岱寅  吴迪 《航空学报》2015,36(5):1585-1595
对超高频(UHF)波段多通道合成孔径雷达(SAR)动目标检测技术进行研究,解决了长相干积累时间导致动目标在方位向散焦严重的问题。采用分块自聚焦技术对多通道SAR地面移动目标指示(GMTI)系统自适应杂波抑制后的SAR图像进行处理,改善杂波抑制后的SAR图像中动目标的聚焦情况,增强动目标与周围剩余杂波的对比度,进而提高恒虚警率(CFAR)检测的性能。与传统杂波抑制后直接进行CFAR检测方法相比较,该方法降低了检测虚警概率。实测数据处理结果显示动目标的信杂比明显提高,动目标方位向聚焦成功,证明了该方法的有效性。  相似文献   

12.
A method is described for adjusting the leval of an RF test signal generator relative to the noise level at the receiver output. The method compares a detected output to a threshold and counts the number of times noise and signal plus noise cross the threshold in a given number of tries. By setting the threshold at a given false alarm probability for noise alone and then adding the test signal and adjusting its level to give a specified detection probability, the signal-to-noise ratio can be calibrated to an accuracy that depends on the number of samples used to measure the probabilities. The false alarm and detection probabilities are given for best accuracy as well as the rms error in signal-to-noise ratio as a function of the number of samples used.  相似文献   

13.
Signal or target detection is sometimes complicated by the presence of strong interference. When this interference occurs mainly in the sidelobes of the antenna pattern, a solution to this problem is realized through a sidelobe canceler (SLC) implementation. Since the false-alarm probability is a system parameter of special importance in radar, an interference-canceling technique for radar application should maintain the false-alarm probability constant over a wide range of incident interference power. With the requirements of sidelobe interference cancellation and constant false alarm rate (CFAR), a new algorithm for radar detection in the presence of sidelobe interference is developed from the generalized likelihood ratio test of Neyman-Pearson. In this development, the received interference is modeled as a nonstationary but slowly varying Gaussian random process. Cancellation of the sidelobe interference is based upon a `synchronous' estimate of the spatial covariance of the interference for the range gate being tested. This algorithm provides a fixed false-alarm rate and a fixed threshold which depend only upon the parameters of the algorithm  相似文献   

14.
In this paper, we investigate data quantization effects in constant false alarm rate (CFAR) signal detection. Exponential distribution for the input data and uniform quantization are assumed for the CFAR detector analysis. Such assumptions are valid in the case of radar for a Swerling I target in Gaussian clutter plus noise and a receiver with analog square-law detection followed by analog-to-digital (A/D) conversion. False alarm and detection probabilities of the cell averaging (CA) and order statistic (OS) CFAR detectors operating on quantized observations are analytically determined. In homogeneous backgrounds with 15 dB clutter power fluctuations, we show analytically that a 12-bit uniform quantizer is sufficient to achieve false alarm rate invariance. Detector performance characteristics in nonhomogeneous backgrounds, due to regions of clutter power transitions and multiple interfering targets, are also presented and detailed comparisons are given  相似文献   

15.
Presented here is a large class of adaptive array detection algorithms with constant false alarm rate (CFAR), so that the false alarm rate can be set to any preassigned number without knowledge of the noise covariance matrix. This class map incorporate any usual method of cell averaging and any method for array weight vector synthesis. A sufficient condition for CFAR is derived, which is easy to satisfy in practice. Basic system parameters are discussed. An example of detection performance for a simple cell-averaging detector, in which the array weight vector is synthesized by the method of diagonal loading, is provided using Monte Carlo simulations  相似文献   

16.
贺霖  潘泉  赵永强  郑纪伟 《航空学报》2006,27(4):657-662
针对航拍高光谱图像中未知背景地物特征条件下小目标的检测问题,给出一种检测算法。利用目标的低概率特性,通过模糊聚类获取高光谱图像中背景的光谱特性;然后将高光谱数据向背景光谱信号的正交子空间及目标信号子空间投影以抑制背景和噪声信号;最后在特征层利用广义似然比检验构造出具有恒虚警特性的检测器,完成融合检测过程。理论分析和实验结果表明了算法的有效性。  相似文献   

17.
By exploring the covariance structure information to reduce the uncertainty in adaptive processing, a persymmetric generalized likelihood ratio algorithm (PGLR) is developed together with the closed-form expressions of probabilities of detection and false alarm. This multiband algorithm, which requires less computation, can significantly outperform the corresponding unstructured multiband GLR algorithm, especially in a severely nonstationary and/or nonhomogeneous interference environment. Simulation shows that the constant false alarm rate (CFAR) performance of the new algorithm is as insensitive as that of the unstructured multiband GLR to the departure of interference distribution from Gaussian  相似文献   

18.
Sensors like radar or sonar usually produce data on the basis of a single frame of observation: target detections. The detection performance is described by quantities like detection probability Pd and false alarm density f. A different task of detection is formation of tracks of targets unknown in number from data of multiple consecutive frames of observation. This leads to quantities which are of a higher level of abstraction: extracted tracks. This again is a detection process. Under benign conditions (high Pd, low f and well separated targets) conventional methods of track initiation are recommended to solve a simple task. However, under hard conditions the process of track extraction is known to be difficult. We here concentrate on the case of well separated targets and derive an optimal combinatorial method which can be used under hard operating conditions. The method relates to MHT (multiple hypothesis tracking), uses a sequential likelihood ratio test and derives benefit from processing signal strength information. The performance of the track extraction method is described by parameters such as detection probability and false detection rate on track level, while Pd and f are input parameters which relate to the signal-to-noise interference ratio (SNIR), the clutter density, and the threshold set for target detection. In particular the average test lengths are analyzed parametrically as they are relevant for a user to estimate the time delay for track formation under hard conditions  相似文献   

19.
In this paper we present an estimation algorithm for tracking the motion of a low-observable target in a gravitational field, for example, an incoming ballistic missile (BM), using angle-only measurements. The measurements, which are obtained from a single stationary sensor, are available only for a short time. Also, the low target detection probability and high false alarm density present a difficult low-observable environment. The algorithm uses the probabilistic data association (PDA) algorithm in conjunction with maximum likelihood (ML) estimation to handle the false alarms and the less-than-unity target detection probability. The Cramer-Rao lower bound (CRLB) in clutter, which quantifies the best achievable estimator accuracy for this problem in the presence of false alarms and nonunity detection probability, is also presented. The proposed estimator is shown to be efficient, that is, it meets the CRLB, even for low-observable fluctuating targets with 6 dB average signal-to-noise ratio (SNR). For a BM in free flight with 0.6 single-scan detection probability, one can achieve a track detection probability of 0.99 with a negligible probability of false track acceptance  相似文献   

20.
The algorithm presented here provides both a constant false-alarm rate (CFAR) detection and a maximum likelihood (ML) Doppler-bearing estimator of a target in a background of unknown Gaussian noise. A target is detected, and its parameters estimated within each range gate by evaluating a statistical test for each Doppler-angle cell and by selecting the cell with maximum output and finally comparing it with a threshold. Its CFAR performance is analyzed by the use of the sample matrix inversion (SMI) method and is evaluated in the cases of a fully adaptive space-time adaptive processing (STAP) and two partially adaptive STAPs. The performances of these criteria show that the probability of detection is a function only of the sample size K used to estimate the covariance matrix and a generalized signal-to-noise ratio. The choice of the number K is a tradeoff between performance and computational complexity. The performance curves demonstrate that the finer the resolution is, the poorer the detection capability. That means that one can trade off the accuracy of ML estimation with the performance of the CFAR detection criterion  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号