首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At the ionospheric level, the substorm onset (expansion phase) is marked by the initial brightening and subsequent breakup of a pre-existing auroral arc. According to the field line resonance (FLR) wave model, the substorm-related auroral arc is caused by the field-aligned current carried by FLRs. The FLRs are standing shear Alfvén wave structures that are excited along the dipole/quasi-dipole lines of the geomagnetic field. The FLRs (that can cause auroral arc) thread from the Earthward edge of the plasma sheet and link the auroral arc to the plasma sheet region of 6–15 R E. The region is associated with magnetic fluctuations that result from the nonlinear wave-wave interactions of the cross-field current-instability. The instability (excited at the substorm onset) disrupts the cross-tail current which is built up during the growth phase of the substorms and results in magnetic fluctuations. The diversion of the current to polar regions can lead to auroral arc intensification. The current FLR model is based on the amplitude equations that describe the nonlinear space-time evolution of FLRs in the presence of ponderomotive forces exerted by large amplitude FLRs (excited during substorms). The present work will modify the FLR wave model to include the effects arising from magnetic fluctuations that result from current disruption near the plasma sheet (6–15 R E). The nonlinear evolution of FLRs is coupled with the dynamics of plasma sheet through a momentum exchange term (resulting from magnetic fluctuations due to current disruption) in the generalized Ohm's law. The resulting amplitude equations including the effects arising from magnetic fluctuations can be used to study the structure of the auroral arcs formed during substorms. We have also studied the role of feedback mechanism (in a dipole geometry of the geomagnetic field) in the formation of the discrete auroral arc observed on the nightside magnetosphere. The present nonlinear dispersive model (NDM) is extended to include effects arising from the low energy electrons originating from the plasma sheet boundary layer. These electrons increase the ionospheric conductivity in a localized patch and enhance the field-aligned current through a feedback mechanism. The feedback effects were studied numerically in a dipole geometry using the the NDM. The numerical studies yield the magnitude of the field-aligned current that is large enough to form a discrete auroral arc. Our studies provide theoretical support to the observational work of Newell et al. that the feedback instability plays a major role in the formation of the discrete auroral arcs observed on the nightside magnetosphere.  相似文献   

2.
Several previous and new S3-3 satellite results on DC electric fields, field-aligned currents, and waves are described, interpreted theoretically, and applied to the understanding of auroral particle acceleration at altitudes below 8000 km. These results include the existence of two spatial scale sizes (less than 0.1 degree and a few degrees invariant latitude) in both the perpendicular and parallel electric fields; the predominance of S-shaped rather than V-shaped equipotential contours on both spatial saales; the correlated presence of field-aligned currents, low frequency wave turbulence, coherent ion cyclotron wave emissions and accelerated upmoving ions and downgoing electrons; intense waves inside electrostatic shocks and important wave-particle interactions therein; correlations of field-aligned currents with magnetospheric boundaries that are determined by convection electric field measurements; electron acceleration producing discrete auroral arcs in the smaller scale fields and producing inverted-V events in the larger scale fields; ion and electron acceleration due to both wave-particle interactions and the parallel electric fields. Further analyses of acceleration mechanisms and energetics are presented.Also Department of Physics.  相似文献   

3.
The high spatial-temporal resolution of instrumentation on the polar-orbiting S3-2 satellite has allowed a wide variety of measurements of the electrodynamic characteristics of both large- and small-scale structures at high latitudes. Analyses of large scale features observed by S3-2 have shown that: (i) The IMF B ydependence of polar cap convection, first observed in June 1969 by OGO-6 persists in other seasons. During periods of northward IMF B zextensive regions of sunward convection may be found in the sunlit polar cap. (ii) In the dawn and dusk MLT sectors >90% of the region 1 currents lie equatorward of the convection reversal line. Potentials across the ionospheric projection of the low-latitude boundary layer are typically a few kV. (iii) The location of extra field-aligned currents, near the dayside cusp and poleward of the region 1 current sheet is dependent on the IMF B ycomponent. (iv) Simultaneous observations by TRIAD and S3-2 show that sheets of field-aligned current extend uniformly for several hours in MLT, but may have an altitude dependence in the 1000–8000 km range. (v) During magnetic storms ionospheric irregularities occur in regions of poleward density gradients and downward field-aligned currents near the equatorward boundary of diffuse auroral precipitation. In the winter polar cap, density irregularities were also found in regions of highly structured electric fields and soft electron precipitation. (vi) During an intense magnetic storm the auroral zone height-integrated Pederson conductivity was calculated to be in the range 10–30 mho and downcoming energetic electron fluxes accounted for between 50% and 70% of the upward Birkeland currents.Analysis of small-scale structures (latitudinal width < 1°), observed by S3-2, have shown that: (i) Intense meridional electric fields (50–250 mV m-1) generated by charge separation near the inner edge of the plasma sheet drive intense subauroral convection and are associated with field-aligned currents, on the order of 1–2 A m-2. (ii) Case studies of discrete arcs in the auroral oval have shown that arcs are associated with pairs of small-scale, field-aligned currents embedded in the large-scale region 1/region 2 field-aligned current sheets. The maximum observed field-aligned current was an upward current of 135 A m-2, confined to a latitudinal width of 2km and carried by field-aligned accelerated electrons. Return (downward) currents associated with arcs are limited to intensities of 10–15 A m-2. At this limit the ionospheric plasma becomes marginally stable to the onset of ion-cyclotron turbulence. Two instances of plasma vortices, characteristic of auroral curls, have been observed in the region between the paired current sheets. (iii) Sun-aligned arcs in the polar cap are found in a region of negative electric field divergence, embedded in an irregular electric field pattern. The electrons producing the arcs have a temperature of 200 eV and have been accelerated through potential drops of 1 kV along the magnetic field. Return currents may appear on both sides of polar-cap arcs.  相似文献   

4.
The characteristics of inverted-V electron precipitation fluxes deduced predominantly from observations by the Atmosphere Explorer satellites are reviewed. The energy and pitch angle distributions are presented and shown to be generally in agreement with acceleration by a parallel electrostatic potential. Characteristics of secondary electrons are examined, and effects of beam plasma instabilities on these electrons are discussed. The properties of the monoenergetic component are compared with theoretical models of creating parallel DC electric fields, and found to favor the anomalous resistivity model. The article also discusses relations of inverted-V events with other auroral phenomena including auroras, electrostatic shocks, convective electric field reversals, field-aligned currents and wave emissions. The principal conclusions are: (1) plasma sheet electrons are continuously accelerated to form inverted-V structures in the pre-midnight hemisphere independent of substorm phase, (2) the acceleration processes are probably related to large scale electrostatic wave turbulence observed at altitudes of a few thousand kilometers, (3) narrow bursts of intense electron precipitation fluxes are found to be imbedded within some inverted-V's. It is argued that the narrow bursts of intense electron precipitation have the proper characteristics to cause discrete auroral arcs in the atmosphere. We suggest that these narrow bursts are accelerated by an electrostatic shock at higher altitude and capable of producing discrete auroral arcs below the observing satellite.  相似文献   

5.
The auroral zone ionosphere is coupled to the outer magnetosphere by means of field-aligned currents. Parallel electric fields associated with these currents are now widely accepted to be responsible for the acceleration of auroral particles. This paper will review the theoretical concepts and models describing this coupling. The dynamics of auroral zone particles will be described, beginning with the adiabatic motions of particles in the converging geomagnetic field in the presence of parallel potential drops and then considering the modifications to these adiabatic trajectories due to wave-particle interactions. The formation of parallel electric fields can be viewed both from microscopic and macroscopic viewpoints. The presence of a current carrying plasma can give rise to plasma instabilities which in a weakly turbulent situation can affect the particle motions, giving rise to an effective resistivity in the plasma. Recent satellite observations, however, indicate that the parallel electric field is organized into discrete potential jumps, known as double layers. From a macroscopic viewpoint, the response of the particles to a parallel potential drop leads to an approximately linear relationship between the current density and the potential drop.The currents flowing in the auroral circuit must close in the ionosphere. To a first approximation, the ionospheric conductivity can be considered to be constant, and in this case combining the ionospheric Ohm's Law with the linear current-voltage relation for parallel currents leads to an outer scale length, above which electric fields can map down to the ionosphere and below which parallel electric fields become important. The effects of particle precipitation make the picture more complex, leading to enhanced ionization in upward current regions and to the possibility of feedback interactions with the magnetosphere.Determining adiabatic particle orbits in steady-state electric and magnetic fields can be used to determine the self-consistent particle and field distributions on auroral field lines. However, it is difficult to pursue this approach when the fields are varying with time. Magnetohydrodynamic (MHD) models deal with these time-dependent situations by treating the particles as a fluid. This class of model, however, cannot treat kinetic effects in detail. Such effects can in some cases be modeled by effective transport coefficients inserted into the MHD equations. Intrinsically time-dependent processes such as the development of magnetic micropulsations and the response of the magnetosphere to ionospheric fluctuations can be readily treated in this framework.The response of the lower altitude auroral zone depends in part on how the system is driven. Currents are generated in the outer parts of the magnetosphere as a result of the plasma convection. The dynamics of this region is in turn affected by the coupling to the ionosphere. Since dissipation rates are very low in the outer magnetosphere, the convection may become turbulent, implying that nonlinear effects such as spectral transfer of energy to different scales become important. MHD turbulence theory, modified by the ionospheric coupling, can describe the dynamics of the boundary-layer region. Turbulent MHD fluids can give rise to the generation of field-aligned currents through the so-called -effect, which is utilized in the theory of the generation of the Earth's magnetic field. It is suggested that similar processes acting in the boundary-layer plasma may be ultimately responsible for the generation of auroral currents.  相似文献   

6.
The relationships of type Pi (broadband) pulsations to various other substorm-related phenomena are reviewed. Several of the more popular mechanisms for the origin of Pi activity are discussed in the light of the observations. There is only one mechanism in sight that tentatively accounts for observed characteristics of Pi 1–2 activity at auroral oval and polar cap latitudes and that is the three-dimensional current loop mechanism. If two or more mechanisms are involved in the generation of Pi noise, then it is possible that the garden-hose overstability and/or a drift Alfvén wave mechanism operating in the plasma sheet contribute to the observed pulsations.The common feature of all Pi 1–2 events is not the presence of temporal precipitation pulsations but the presence of an E-region, suggesting that enhanced conductivity and E-region currents are required. Pi activity appears to be closely related to unsteady convection in progress. Pi data promise to provide useful information on convection and field-aligned and ionospheric currents.  相似文献   

7.
Alexeev  Igor I. 《Space Science Reviews》2003,107(1-2):141-148
Three ways of the energy transfer in the Earth's magnetosphere are studied. The solar wind MHD generator is an unique energy source for all magnetospheric processes. Field-aligned currents directly transport the energy and momentum of the solar wind plasma to the Earth's ionosphere. The magnetospheric lobe and plasma sheet convection generated by the solar wind is another magnetospheric energy source. Plasma sheet particles and cold ionospheric polar wind ions are accelerated by convection electric field. After energetic particle precipitation into the upper atmosphere the solar wind energy is transferred into the ionosphere and atmosphere. This way of the energy transfer can include the tail lobe magnetic field energy storage connected with the increase of the tail current during the southward IMF. After that the magnetospheric substorm occurs. The model calculations of the magnetospheric energy give possibility to determine the ground state of the magnetosphere, and to calculate relative contributions of the tail current, ring current and field-aligned currents to the magnetospheric energy. The magnetospheric substorms and storms manifest that the permanent solar wind energy transfer ways are not enough for the covering of the solar wind energy input into the magnetosphere. Nonlinear explosive processes are necessary for the energy transmission into the ionosphere and atmosphere. For understanding a relation between substorm and storm it is necessary to take into account that they are the concurrent energy transferring ways. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Magnetic field data from a meridian chain of observatories and the recently developed computer codes constitute a powerful tool in studying substorm current systems in the polar region. In this paper, we summarize some of the results obtained from the IMS Alaska meridian chain of observatories. The basic data are the average daily magnetic field variations for 50 successive days (March 9–April 27, 28) which represent a moderately disturbed period. With the aid of the two computer codes, we obtained the distribution of the following quantities in the polar ionosphere in invariant-MLT coordinates: (1) the total ionospheric current; (2) the Pedersen current; (3) the Hall current; (4) the field-aligned currents; (5) the Pedersen-associated field-aligned currents; (6) the Hall-associated field-aligned currents; (7) the electric potential; (8) the Joule heat production rate; (9) the auroral particle energy injection rate; (10) the total energy dissipation rate. All these quantities are related to each other self-consistently at every point under the initial assumptions used in the computation. By using a model of the magnetosphere, the following quantities in the polar ionosphere are projected onto the equatorial plane and the Y — Z plane at X = -20 R E: (11) the Pedersen current counterpart; (12) the Hall current counterpart; (13) the electric potential; (14) the Pedersen-associated field-aligned currents; (15) the Hall-associated field-aligned currents. These distribution patterns serve as an important basis for studying the generation mechanisms of substorm current systems and the magnetosphere-ionosphere coupling process.  相似文献   

9.
The paper reviews the importance of inductive electric fields in explaining different magnetospheric and auroral phenomena during moderately and highly disturbed conditions. Quiet-time particle energization and temporal development of the tail structure during the substorm growth phase are explained by the presence of a large-scale electrostatic field directed from dawn to dusk over the magnetotail. Conservation of the first adiabatic invariant in the neutral sheet with a small value of the gradient in the magnetic field implies that the longitudinal energy increases at each crossing of the neutral sheet. At a certain moment, this may result in a rapid local growth of the current and in an instability that triggers the onset. During the growth phase energy is stored mainly in the magnetic field, since the energy density in the electric field is negligible compared to that of the magnetic field (ratio 1: 107). An analytical model is described in which the characteristic observations of a substorm onset are taken into account. One major feature is that the triggering is confined to a small local time sector. During moderate disturbances, the induction fields in the magnetotail are stronger by at least one order of magnitude than the average cross-tail field. Temporal development of the disturbed area results in X- and O-type neutral lines. Particles near to these neutral lines are energized to over 1 MeV energies within a few seconds, due to an effective combination of linear and betatron acceleration. The rotational property of the induction field promotes energization in a restricted area with dimensions equivalent to a few Earth's radii. The model also predicts the existence of highly localized cable-type field-aligned currents appearing on the eastern and western edges of the expanding auroral bulge. It is shown that the predictions agree with satellite observations and with the data obtained from the two-dimensional instrument networks operated in Northern Europe during the International Magnetospheric Study (IMS, 1976–79).  相似文献   

10.
Mende  S.B.  Frey  H.U.  Immel  T.J.  Gerard  J.-C.  Hubert  B.  Fuselier  S.A. 《Space Science Reviews》2003,109(1-4):211-254
The IMAGE spacecraft carries three FUV photon imagers, the Wideband Imaging Camera (WIC) and two channels, SI-12 and SI-13, of the Spectrographic Imager. These provide simultaneous global images, which can be interpreted in terms of the precipitating particle types (protons and electrons) and their energies. IMAGE FUV is the first space-borne global imager that can provide instantaneous global images of the proton precipitation. At times a bright auroral spot, rich in proton precipitation, is observed on the dayside, several degrees poleward of the auroral zone. The spot was identified as the footprint of the merging region of the cusp that is located on lobe field lines when IMF Bz was northward. This identification was based on compelling statistical evidence showing that the appearance and location of the spot is consistent with the IMF Bz and By directions. The intensity of the spot is well correlated with the solar wind dynamic pressure and it was found that the direct entry of solar wind particles could account for the intensity of the observed spot without the need for any additional acceleration. Another discovery was the observation of dayside sub-auroral proton arcs. These arcs were observed in the midday to afternoon MLT sector. Conjugate satellite observations showed that these arcs were generated by pure proton precipitation. Nightside auroras and their relationship to substorm phases were studied through single case studies and in a superimposed epoch analysis. It was found that generally there is substantial proton precipitation prior to substorms and the proton intensity only doubles at substorm onset while the electron auroral brightness increases on average by a factor of 5 and sometimes by as much as a factor of 10. Substorm onset occurs in the central region of the pre-existing proton precipitation. Assuming that nightside protons are precipitating from a quasi-stable ring current at its outer regions where the field lines are distorted by neutral sheet currents we can associate the onset location with this region of closed but distorted field lines relatively close to the earth. Our results also show that protons are present in the initial poleward substorm expansion however later they are over taken by the electrons. We also find that the intensity of the substorms as quantified by the intensity of the post onset electron precipitation is correlated with the intensity of the proton precipitation prior to the substorms, highlighting the role of the pre-existing near earth plasma in the production of the next substorm.  相似文献   

11.
Causality between near-Earth and midtail substorm processes is one of the most controversial issues about the substorm trigger mechanism. The currently most popular model, the outside-in model, assumes that near-Earth reconnection is initiated in the midtail region before substorm onset and that the associated flow burst causes tail current disruption in the near-Earth region. However, there remain some outstanding issues that may serve as critical tests of this model. The present article reviews recent satellite and ground observations addressing three such critical issues with a focus on substorm-related auroral features. First, near-Earth reconnection, even if it reaches the lobe magnetic field, does not necessarily trigger a global substorm, but it is often related to a pseudobreakup. This fact suggests that there is an additional or alternative condition for substorm development. Secondly, although there appears to be one-to-one correspondence between flow bursts in the plasma sheet and equatorward-moving auroral structures (auroral streamers), no such auroral feature that can be associated with the fast plasma flow can be identified prior to auroral breakups. On the other hand, the flow burst is widely regarded as a manifestation of reconnection and therefore, according to the outside-in model, should be created in the near-Earth plasma sheet before substorm onset. Finally, auroral arcs poleward of a breakup arc are not affected until the front of auroral intensification reaches those arcs. The last two points suggest that if substorm is triggered as the outside-in model describes, the ionosphere is electromagnetically detached from the magnetosphere, which, however, has not been addressed theoretically. Thus, it should be crucial for a better understanding of the substorm trigger process to implement the magnetosphere-ionosphere coupling in future modeling efforts and to address those basic issues as a guide for critically evaluating each model.  相似文献   

12.
Recent theoretical developments in auroral research are reviewed. In spite of the great complexity involved, a unified theory begins to emerge. The framework of this unified theory is provided by the imperfect magnetosphere-ionosphere coupling due to enhanced magnetospheric convection. The auroral potential structures in the imperfect coupling state result from the loss cone constriction on enhanced upward field-aligned currents following enhanced magnetospheric convections. Field-aligned potential drops for the inverted V precipitations are supported by a combination of the double layer process, the pitch-angle anisotropy process, the wave-particle interaction (anomalous resistivity) process, the electrostatic shock and the thermoelectric process in descending order of importance. Quasineutrality along inverted V field lines is maintained primarily by the trapped and back-scattered electrons produced respectively by wave-particle interactions in the magnetosphere and electron-neutral collisions in the ionosphere. Additional electron energization due to the ion cyclotron turbulence may lead to striations along the inverted V field lines to produce thin auroral arcs imbedded in the inverted V precipitation. The formation of discrete auroras can now be understood as a manifestation of the imperfect magnetosphere-ionosphere coupling due to enhanced magnetosphere-ionosphere interaction.  相似文献   

13.
Recent measurements of precipitating energetic particles and vector magnetic fields from satellites and sounding rockets have verified the existence of geomagnetically-aligned electric currents at high latitudes in the ionosphere and magnetosphere. The spatial and temporal configuration of such currents, now commonly called Birkeland currents, has delineated their role in providing ionospheric closure of magnetospheric current systems, and gross features of these current systems may be understood in terms of theoretical models of magnetospheric convection. The association of Birkeland currents with auroral features on a very small scale suggests that auroral acceleration may result from the current flow.  相似文献   

14.
Aurora is caused by the precipitation of energetic particles into a planetary atmosphere, the light intensity being roughly proportional to the precipitating particle energy flux. From auroral research in the terrestrial magnetosphere it is known that bright auroral displays, discrete aurora, result from an enhanced energy deposition caused by downward accelerated electrons. The process is commonly referred to as the auroral acceleration process. Discrete aurora is the visual manifestation of the structuring inherent in a highly magnetized plasma. A strong magnetic field limits the transverse (to the magnetic field) mobility of charged particles, effectively guiding the particle energy flux along magnetic field lines. The typical, slanted arc structure of the Earth’s discrete aurora not only visualizes the inclination of the Earth’s magnetic field, but also illustrates the confinement of the auroral acceleration process. The terrestrial magnetic field guides and confines the acceleration processes such that the preferred acceleration of particles is frequently along the magnetic field lines. Field-aligned plasma acceleration is therefore also the signature of strongly magnetized plasma. This paper discusses plasma acceleration characteristics in the night-side cavity of Mars. The acceleration is typical for strongly magnetized plasmas – field-aligned acceleration of ions and electrons. The observations map to regions at Mars of what appears to be sufficient magnetization to support magnetic field-aligned plasma acceleration – the localized crustal magnetizations at Mars (Acuña et al., 1999). Our findings are based on data from the ASPERA-3 experiment on ESA’s Mars Express, covering 57 orbits traversing the night-side/eclipse of Mars. There are indeed strong similarities between Mars and the Earth regarding the accelerated electron and ion distributions. Specifically acceleration above Mars near local midnight and acceleration above discrete aurora at the Earth – characterized by nearly monoenergetic downgoing electrons in conjunction with nearly monoenergetic upgoing ions. We describe a number of characteristic features in the accelerated plasma: The “inverted V” energy-time distribution, beam vs temperature distribution, altitude distribution, local time distribution and connection with magnetic anomalies. We also compute the electron energy flux and find that the energy flux is sufficient to cause weak to medium strong (up to several tens of kR 557.7 nm emissions) aurora at Mars. Monoenergetic counterstreaming accelerated ions and electrons is the signature of field-aligned electric currents and electric field acceleration. The topic is reasonably well understood in terrestrial magnetospheric physics, although some controversy still remains on details and the cause-effect relationships. We present a potential cause-effect relationship leading to auroral plasma acceleration in the nightside cavity of Mars – the downward acceleration of electrons supposedly manifesting itself as discrete aurora above Mars.  相似文献   

15.
Most substorm researchers assume substorms to be caused by a unique large-scale process. However, a critical evaluation of substorm observations indicates that a new paradigm is needed to understand the substorm phenomenon and the magnetospheric dynamics in general. It is proposed here that substorms involve a number of physical processes covering over a wide range of spatial and temporal scales. Potential candidates include the kinetic or shear ballooning instability, the Kelvin-Helmholtz instability, the cross-field current instability, the tearing instability, and magnetic reconnection. An observational constraint on the qualified process for substorm onset is that it must be associated with magnetic field lines of auroral arcs since substorm onsets start with brightening of a pre-existing auroral arc. Which particular process dominates in a given substorm depends on the present and past states of the magnetosphere as well as the external solar wind. The magnetosphere is almost perpetually driven by the solar wind to be near a critical point and in a metastable state. Magnetospheric disturbances occur sporadically in multiple localized sites. A substorm is realized when the combined effect of these localized disturbances become global in extent, much like the system-wide activity in a sandpile or avalanche model.  相似文献   

16.
We review generation mechanisms of Birkeland currents (field-aligned currents) in the magnetosphere and the ionosphere. Comparing Birkeland currents predicted theoretically with those studied observationally by spacecraft experiments, we present a model for driving mechanism, which is unified by the solar wind-magnetosphere interaction that allows the coexistence of steady viscous interaction and unsteady magnetic reconnection. The model predicts the following: (1) the Region 1 Birkeland currents (which are located at poleward part of the auroral Birkeland-current belt, and constitute quasi-permanently and stably a primary part of the overall system of Birkeland currents) would be fed by vorticity-induced space charges at the core of two-cell magnetospheric convection arisen as a result of viscous interaction between the solar wind and the magnetospheric plasma, (2) the Region 2 Birkeland currents (which are located at equatorward part of the auroral Birkeland-current belt, and exhibit more variable and localized behavior) would orginate from regions of plasma pressure inhomogeneities in the magnetosphere caused by the coupling between two-cell magnetospheric convection and the hot ring current, where the gradient-B current and/or the curvature current (presumably the hot plasma sheet-ring current) are forced to divert to the ionosphere, (3) the Cusp Birkeland currents (which are located poleward of and adjacent to the Region 1 currents and are strongly controlled by the interplanetary magnetic field (IMF)) might be a diversion of the inertia current which is newly and locally produced in the velocity-decelerated region of earthward solar wind where the magnetosphere is eroded by dayside magnetic reconnection, (4) the nightside Birkeland currents which are connected to a part of the westward auroral electrojet in the Harang discontinuity sector might be a diversion of the dusk-to-dawn tail current resulting from localized magnetic reconnection in the magnetotail plasma sheet where plasma density and pressure are reduced.  相似文献   

17.
The morphology of development of auroral flares (magnetospheric substorms) for both electron and proton auroras is summarized, based on ground-based as well as rocket-borne and satellite-borne data with specific reference to the morphology of solar flares.The growth phase of an auroral flare is produced by the inflow of the solar wind energy into the magnetosphere by the reconnection mechanism between the solar wind field and the geomagnetic field, thus the neutral and plasma sheets in the magnetotail attaining their minimum thickness with a great stretch of the geomagnetic fluxes into the tail.The onset of the expansion phase of an auroral flare is represented by the break-up of electron and proton auroras, which is associated with strong auroral electrojets, a sudden increase in CNA, VLF hiss emissions and characteristic ULF emissions. The auroral break-up is triggered by the relaxation of stretched magnetic fluxes caused by cutting off of the tail fluxes at successively formed X-type neutral lines in the magnetotail.The resultant field-aligned currents flowing between the tailward magnetosphere and the polar ionosphere produce the field-aligned anomalous resistivity owing to the electrostatic ion-cyclotron waves; the electrical potential drop thus increased further accelerates precipitating charged particles with a result of the intensification of both the field-aligned currents and the auroral electrojet. It seems that the rapid building-up of this positive feedback system for precipitating charged particles is responsible for the break-up of an auroral flare.  相似文献   

18.
19.
The downward field-aligned current region plays an active role in magnetosphere-ionosphere coupling processes associated with aurora. A quasi-static electric field structure with a downward parallel electric field forms at altitudes between 800 km and 5000 km, accelerating ionospheric electrons upward, away from the auroral ionosphere. A wealth of related phenomena, including energetic ion conics, electron solitary waves, low-frequency wave activity, and plasma density cavities occur in this region, which also acts as a source region for VLF saucers. Results are presented from sounding rockets and satellites, such as Freja, FAST, Viking, and Cluster, to illustrate the characteristics of the electric fields and related parameters, at altitudes below, within, and above the acceleration region. Special emphasis will be on the high-altitude characteristics and dynamics of quasi-static electric field structures observed by Cluster. These structures, which extend up to altitudes of at least 4–5 Earth radii, appear commonly as monopolar or bipolar electric fields. The former are found to occur at sharp boundaries, such as the polar cap boundary whereas the bipolar fields occur at soft plasma boundaries within the plasma sheet. The temporal evolution of quasi-static electric field structures, as captured by the pearls-on-a-string configuration of the Cluster spacecraft indicates that the formation of the electric field structures and of ionospheric plasma density cavities are closely coupled processes. A related feature of the downward current often seen is a broadening of the current sheet with time, possibly related to the depletion process. Preliminary studies of the coupling of electric fields in the downward current region, show that small-scale structures appear to be decoupled from the ionosphere, similar to what has been found for the upward current region. However, exceptions are also found where small-scale electric fields couple perfectly between the ionosphere and Cluster altitudes. Recent FAST results indicate that the degree of coupling differs between sheet-like and curved structures, and that it is typically partial. The mapping depends on the current-voltage relationship in the downward current region, which is highly non-linear and still unclear, as to its specific form.  相似文献   

20.
The recent development of several new observational techniques as well as of advanced computer simulation codes has contributed significantly to our understanding of dynamics of the three-dimensional current system during magnetospheric substorms. This paper attempts to review the main results of the last decade of research in such diverse fields as electric fields and currents in the high-latitude ionosphere and field-aligned currents and their relationship to the large-scale distribution of auroras and auroral precipitation. It also contains discussions on some efforts in synthesizing the vast amount of the observations to construct an empirical model which connects the ionospheric currents with field-aligned currents. While our understanding has been greatly improved during the last decade, there is much that is as yet unsettled. For example, we have reached only a first approximation model of the three-dimensional current system which is not inconsistent with integrated, ground-based and space observations of electric and magnetic fields. We have just begun to unfold the cause of the field-aligned currents both in the magnetosphere and ionosphere. Dynamical behaviour of the magnetosphere-ionosphere coupling relating to substorm variability can be an important topic during the coming years.On leave of absence from Kyoto Sangyo University, Kyoto 603, Japan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号