共查询到20条相似文献,搜索用时 15 毫秒
1.
The experiment on Cosmos 1129 was based on our results obtained in rats exposed to single or repeated restrain stress in the laboratory. These results have convincingly demonstrated a significant increase of serotonin concentration (5-HT) in the hypothalamus in acutely stressed rats. This response, which was found also in the isolated hypothalamic nuclei, was diminished in repeatedly (40 times) immobilized rats. While the concentration of 5-HT was unchanged in the majority of the hypothalamic nuclei of animals subjected to cosmic flight, an increase was recorded only in the supraoptic nucleus (NSO) and a decrease in the periventricular nucleus. These findings demonstrate that only few areas of the hypothalamus respond to cosmic flight with changes of 5-HT concentration and suggest either that long-term cosmic flight cannot be an intensive stressor or that during the flight the rats became already adapted to its long-term effect. However, the exposure of flight rats to repeated immobilization stress resulted in a significant increase of 5-HT in the NSO, para-ventricular and dorsomedial (NDM) nuclei. It should be noted that we have never seen any changes of 5-HT concentration, tryptophan hydroxylase and monoamineoxidase activities in repeatedly (40 times) immobilized rats. On the other hand, the increase of 5-HT concentration in the NDM is a typical finding after seven exposures of rats to immobilization on Earth, daily for 150 min. In the experiment COSMOS 1129 such an increase of 5-HT concentration in the NDM was found not only in the flight group but also in the control group of rats subjected to five daily exposures of immobilization stress. With respect to these findings, the increased 5-HT concentrations observed in some isolated hypothalamic nuclei in the flight group of rats exposed after landing to repeated immobilization stress suggest that long-term space flight and the state of weightlessness do not represent a stressogenic factor with respect to the serotoninergic system in the hypothalamus. 相似文献
2.
Elena S. Tomilovskaya Millard F. Reschke Jody M. Krnavek Inessa Kozlovskaya 《Acta Astronautica》2011,68(9-10):1454-1461
The purpose of the study was to explore the effects of long-duration space flight on the acquisition of specific visual targets in the horizontal plane. Seven cosmonauts (4 high performance pilots and 3 non-pilots) who had flown between 186–198 days on Mir served as subjects. Baseline testing was performed 4 times prior to launch and 4 times following landing at different intervals totrack recovery. During testing the subjects were required to acquire targets that were randomly presented with both a head and eye movement using a time optimal strategy. Prior to flight two unique head movement strategies, related primarily to piloting experience, were used for target acquisition. Non-pilots employed a Type-I strategy consisting of high velocity head movements with large peak amplitudes, while high performance pilots used primarily low velocity, small amplitude head movements (Type-II) to acquire the targets (p<0.02). For both strategies peak head velocities increased as the angular distance to the target increased (p<0.01) resulting in greater discrimination between strategies for the 60° targets. While preflight eye velocity between strategies did not reach statistical significance, postflight testing revealed a decrease in eye velocity for Type-I compared with their preflight performance (p<0.02) for the 60° targets. Postflight, the Type-I group showed a decrease in head velocity (p<0.20) while the Type-II group compensated by increasing head velocity (p<0.02). Variability for both of the head and eye parameters tended to increase postflight for both types of strategies. 相似文献
3.
Layne CS Lange GW Pruett CJ McDonald PV Merkle LA Mulavara AP Smith SL Kozlovskaya IB Bloomberg JJ 《Acta Astronautica》1998,43(3-6):107-119
The precise neuromuscular control needed for optimal locomotion, particularly around heel strike and toe off, is known to he compromised after short duration (8- to 15-day) space flight. We hypothesized here that longer exposure to weightlessness would result in maladaptive neuromuscular activation during postflight treadmill walking. We also hypothesized that space flight would affect the ability of the sensory-motor control system to generate adaptive neuromuscular activation patterns in response to changes in visual target distance during postflight treadmill walking. Seven crewmembers, who completed 3- to 6-month missions, walked on a motorized treadmill while visually fixating on a target placed 30 cm (NEAR) or 2 m (FAR) from the subject's eyes. Electronic foot switch data and surface electromyography were collected from selected muscles of the right lower limb. Results indicate that the phasic features of neuromuscular activation were moderately affected and the relative amplitude of activity in the tibialis anterior and rectus femoris around toe off changed after space flight. Changes also were evident after space flight in how these muscles adapted to the shift in visual target distance. 相似文献
4.
5.
The effect of a 20-day space flight on water, Na+, K+, Mg2+, Ca2+ and glycogen contents as well as on activities of glycogen metabolism enzymes--glycogen synthetase and glycogen phosphorylase--of rat skeletal muscles was studied. This data is regarded as an integral test characterizing the state of contractile tissue of the animals at the final stage of flight aboard biosatellites. The measurements indicate that there were no significant changes of cations and glycogen contents nor of the enzymic activities in fast-twitch muscles during the 20-day spaceflight. At the same time dehydration in these muscles was observed, which disappeared on the 25th postflight day. In slow-twitch antigravitational skeletal muscle (m. soleus) there was a decrease of K+ and increase of Na+ in the tissue contents. The changes disappeared at the end of the on-earth readaptation period. From the pattern of these observations, we can conclude that the 20-day space flight leads to some reversible biochemical changes of the rat skeletal muscles. A conclusion can be drawn about necessity of creating, aboard the spaceship, an artificial load on antigravitational skeletal muscles. 相似文献
6.
载人航天测控通信系统 总被引:4,自引:0,他引:4
在原有卫星测控网的基础上规划设计的载人航天测控通信系统与国际标准接轨,通过国内外的地面测控站和遍布三大洋的四艘远洋测量船保证了地面与飞船的测量控制和通信,实现了多项关键技术突破。它不仅能满足载人航天任务的高可靠、高精度、高覆盖、高速率的需要,还能同时为30颗以上卫星提供测控通信支持,这标志着我国自主发展的航天测控通信技术达到了世界先进水平。 相似文献
7.
Changes in body fluids, electrolytes, and muscle mass are manifestations of adaptation to space flight and readaptation to the 1-g environment. The purposes of this paper are to review the current knowledge of biomedical responses to short- and long-duration space missions and to assess the efficacy of countermeasures to 1-g conditioning. Exercise protocols, fluid hydration, dietary and potential pharmacologic measures are evaluated, and directions for future research activities are recommended. 相似文献
8.
The recent biomedical investigations conducted on the Space Shuttle and Spacelab have provided a wealth of biomedical information, including the ability to test the efficacy of proposed countermeasures. This achievement was made possible by the ability to conduct mechanistic and control-interventive studies simultaneously with a large number of individuals over a relatively brief period and to compare these data with results obtained from the Skylab missions. Comparisons between short- and long-duration results were limited to establishing trends or extrapolating from short-duration missions. To date, we have evaluated several protocols involving the lower-body negative pressure (LBNP) device, the bicycle-ergometer, the treadmill and preparations for body-fluid replenishment. In many instances, the traditional means of applying these protocols were not sufficient to protect against space-related deconditioning. This paper will review current countermeasures and compare their efficacy to that of existing protocols. Results from in-flight and ground-based experiments will be presented to illuminate the recommended protocols and procedures. 相似文献
9.
10.
This paper emphasizes the devastating effects of displacement of calcium during space flight, due to increased bone turnover. 相似文献
11.
12.
Leonard JI 《Acta Astronautica》1986,13(6-7):441-457
This report summarizes many of the results obtained during the Skylab program, on metabolic changes during weightlessness. The examination of the data was conducted following an integrated multi-disciplinary and multi-experimental approach. Emphasis is given on several major aspects of metabolic adaptation to space flight: fluid-electrolyte regulation, mechanisms of hormone disturbances, energy balance and etiology of weight loss. The aim is to obtain a composite picture of the fluid, electrolyte and energy response to weightlessness. 相似文献
13.
Baevsky RM Moser M Nikulina GA Polyakov VV Funtova II Chernikova AG 《Acta Astronautica》1998,42(1-8):159-173
The space flight of physician cosmonaut V.V. Polyakov, the longest to date (438 days), has yielded new data about human adaptation to long-term weightlessness. Autonomic regulation of circulation and cardiac contractility were evaluated in three experiments entitled Pulstrans, Night, and Holter. In the Pulstrans experiment electrocardiographic (ECG), ballistocardiographic (BCG), seismocardiographic (SCG), and some other parameters were recorded. In the Night experiment, only the ballistocardiogram was recorded, but a special feature of this experiment is that the BCG records were obtained with a contactless method. This method has several advantages, the most important of which are the possibility of studying slow-wave variations in physiologic parameters (ultradian rhythms) on the basis of recordings made under standard conditions over a prolonged period. The Holter experiment (24-hour electrocardiographic monitoring) used a portable cardiorecorder (Spacelab, USA). The obtained electrocardiographic data were used to analyze heart rate variability. In the first 6 months of the 14-month flight, the dynamics of cardiovascular parameters in V.V. Polyakov was virtually the same as in the other cosmonauts. The data obtained after the first 6 months of Polyakov's sojourn in space are unique and mention should be made of at least three important aspects: (1) activation of a new, additional adaptive mechanism in the 8th-9th months of flight, as is evidenced by alterations in the periodicity and power of superslow wave oscillations (ultradian rhythms) reflecting the activity of the subcortical cardiovascular centers and of the higher levels of autonomic regulation; (2) growth of cardiac contractility accompanied by a decrease in heart rate during the last few months of flight; (3) a considerable increase in the daily average values of absolute power of heart rate's variability MF component, which reflects the activity of the vasomotor center. Specific mechanisms of adaptation to weightless conditions appear to be associated with activation of higher autonomic centers. The hypothesis that central levels of circulation regulation are activated in a long-term space flight was investigated by analyzing of ultradian rhythms in nighttime. The data, received during the flight of V. V. Polyakov, show, that the process of human adaptation to long influence of weightlessness consists of a number of consecutive stages, during which the activation of more and more high levels of control system of physiological functions occurs. 相似文献
14.
Selected results from experiments investigating the potentially specific radiobiological importance of the cosmic HZE (= high Z, energetic) particles are discussed. Results from the Biostack space flight experiments, which were designed to meet the experimental requirements imposed by the microdosimetric nature of this radiation field, clearly indicate the existence of radiation mechanisms which become effective only at higher values of LET (linear energy transfer). Accelerator irradiation studies are reviewed which conform with this conjecture. The recently discovered production of "micro-lesions" in mammalian tissues by single HZE particles is possibly the most direct evidence. Open questions concerning the establishment of radiation standards for manned spaceflight, such as late effects, interaction with flight dynamic parameters, and weightlessness, are indicated. 相似文献
15.
《Acta Astronautica》2007,60(4-7):341-350
Astronauts are required to perform mission-critical tasks at a high level of functional capability throughout spaceflight. Stressors can compromise their ability to do so, making early objective detection of neurobehavioral problems in spaceflight a priority. Computer optical approaches offer a completely unobtrusive way to detect distress during critical operations in space flight. A methodology was developed and a study completed to determine whether optical computer recognition algorithms could be used to discriminate facial expressions during stress induced by performance demands. Stress recognition from a facial image sequence is a subject that has not received much attention although it is an important problem for many applications beyond space flight (security, human–computer interaction, etc.). This paper proposes a comprehensive method to detect stress from facial image sequences by using a model-based tracker. The image sequences were captured as subjects underwent a battery of psychological tests under high- and low-stress conditions. A cue integration-based tracking system accurately captured the rigid and non-rigid parameters of different parts of the face (eyebrows, lips). The labeled sequences were used to train the recognition system, which consisted of generative (hidden Markov model) and discriminative (support vector machine) parts that yield results superior to using either approach individually. The current optical algorithm methods performed at a 68% accuracy rate in an experimental study of 60 healthy adults undergoing periods of high-stress versus low-stress performance demands. Accuracy and practical feasibility of the technique is being improved further with automatic multi-resolution selection for the discretization of the mask, and automated face detection and mask initialization algorithms. 相似文献
16.
B. D. Khristoforov 《Cosmic Research》2011,49(3):263-268
For modeling the space dust and debris effect on flying vehicles, an investigation of the low-velocity impact of corundum and tungsten powders, accelerated by explosion, with particle size up to 50 microns on steel and duralumin targets was carried out. Also studied was the impact of sewing needles against metal and dielectric barriers, antimeteor shield models, and duralumin containers with hard materials, gunpowder, and explosives. At impact of powders at velocities of up to 2 km/s and needles at a velocity of up to 0.5 km/s against metals, the channels arose with lengths greater than 100 and 50 diameters of a striker. At impact of needles, the containers with hard explosive materials were destroyed because of ignition of their contents, and containers with plastic explosive were punched through, and no burning occurred. The energy, released at destruction of plexiglas blocks and containers with hard materials, many times exceeded the impact energy due to release of the elastic energy stored in them. 相似文献
17.
Vestibular disturbances in connection with space flight were reported by a majority of participating astronauts and cosmonauts. These include motion sickness symptoms in the first few days of the space flight, as well as standing, gait and orientation disturbances after the return to Earth. The Aerospace Medical Community has been trying to select those people that are particularly adapted to the above stresses or that can be further adapted through training programs. As the circle of selectees extends to women, the problem arises as to whether differences between men and women exist under the conditions of space flight. In seeking answers to this question we studied a group of 42 women and 44 men, who were further subdivided according to their subjective motion sickness sensitivity, as determined by a questionnaire. Using this material, 26 men and 22 women were designated as motion sickness resistant, and 18 men and 20 women were designated as nonresistant. The vestibular test battery given these test subjects consisted of caloric, rotatory, optokinetic, vestibulo-spinal and vestibulo-vegetative testing. Because of the mixed orthostatic and vestibular problems seen after space flights, we also studied the response of the vestibular apparatus during peripheral blood pooling as induced by lower body negative pressure. The collected historical and test data are analyzed in this paper with emphasis on the relationship to motion sickness tendency. 相似文献
18.
B. Morukov M. Rykova E. Antropova T. Berendeeva S. Ponomaryov I. Larina 《Acta Astronautica》2011,68(7-8):739-746
Long-duration spaceflight effects on T-cell immunity and cytokine production were studied in 12 Russian cosmonauts flown onto the International Space Station. Specific assays were performed before launch and after landing and included analysis of peripheral leukocyte distribution, analysis of T-cell phenotype, expression of activation markers, apoptosis, proliferation of T cells in response to a mitogen, concentrations of cytokines in supernatants of cell cultures. Statistically significant increase was observed in leukocytes’, lymphocytes’, monocytes’ and granulocytes’ total number, increase in percentage and absolutely number of CD3+CD4+-cells, CD4+CD45RA+-cells and CD4+CD45RA+/CD4+CD45RО+ ratio, CD4+CD25+Bright regulatory cells (p<0,05) in peripheral blood after landing. T-lymphocytes’ capacity to present CD69 and CD25 on its own surfaces was increased for the majority of crewmembers. Analysis of T-cell response to PHA-stimulation in vitro revealed there were some trends toward reduced proliferation of stimulated T-lymphocytes. There was an apparent post flight decrease in secreted IFN-g for the majority of crewmembers and in most instances there was elevation in secreted IL-10. It revealed depression of IFN-g/IL-10 ratio after flight. Correlation analysis according to Spearman’s rank correlation test established significant positive correlations (p<0.05) between cytokine production and T-cell activation (CD25+, CD38+) and negative correlation (p<0.05) between cytokine production and number of bulk memory CD4+T-cells (CD45RO+). Thus, these results suggest that T-cell dysfunction can be conditioned by cytokine dysbalance and could lead to development of disease after long-duration space flights. 相似文献
19.
Werner Schulz 《Acta Astronautica》1980,7(11):1213-1227
In 1923 Hermann Oberth published his book “Die Rakete zu den Planetenräumen” (The Rocket into Planetary Space), in 1924 Max Valier's book “Der Vorstoss in den Weltenraum” (The Advance into Space) appeared while in the U.S.A. already in 1919 Robert H. Goddard reported on his rocket experiments. Altogether different from the publications just mentioned was a book entitled “Die Erreichbarkeit der Himmelskörper” (The Attainability of Celestial Bodies) published in 1925. Its author was Dr.-Ing. Walter Hohmann, born 18 March 1880, civil engineer for the city authorities of Essen, who had already made, during World War I, calculations as to the amount of fuel, initial mass and flight time necessary for flights from the Earth to other planets. The transfer trajectories investigated by Hohmann and today attributed with his name have a great practical significance for space flight onto the present. In the lecture a critical appreciation of Hohmann's work is given. 相似文献
20.
Onofri S de la Torre R de Vera JP Ott S Zucconi L Selbmann L Scalzi G Venkateswaran KJ Rabbow E Sánchez Iñigo FJ Horneck G 《Astrobiology》2012,12(5):508-516
Cryptoendolithic microbial communities and epilithic lichens have been considered as appropriate candidates for the scenario of lithopanspermia, which proposes a natural interplanetary exchange of organisms by means of rocks that have been impact ejected from their planet of origin. So far, the hardiness of these terrestrial organisms in the severe and hostile conditions of space has not been tested over extended periods of time. A first long-term (1.5 years) exposure experiment in space was performed with a variety of rock-colonizing eukaryotic organisms at the International Space Station on board the European EXPOSE-E facility. Organisms were selected that are especially adapted to cope with the environmental extremes of their natural habitats. It was found that some-but not all-of those most robust microbial communities from extremely hostile regions on Earth are also partially resistant to the even more hostile environment of outer space, including high vacuum, temperature fluctuation, the full spectrum of extraterrestrial solar electromagnetic radiation, and cosmic ionizing radiation. Although the reported experimental period of 1.5 years in space is not comparable with the time spans of thousands or millions of years believed to be required for lithopanspermia, our data provide first evidence of the differential hardiness of cryptoendolithic communities in space. 相似文献