首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In order to investigate the movement of a statolith complex along the longitudinal axis of root cap statocytes under different mass accelerations, a series of experiments with Lepidium sativum L. in an automatically operating centrifuge during the Bion-11 satellite flight and on a centrifuge-clinostat have been performed. During spaceflight, roots were grown for 24 h under root-tip-directed centrifugal 1-g acceleration, then exposed to microgravity for 6, 12 and 24 min and chemically fixed. During the first 6 min of microgravity, the statoliths moved towards the cell center with a mean velocity of 0.31 +/- 0.04 micrometers/min, which decreased to 0.12 +/- 0.01 micrometers/min within subsequent 12-24 min period. The mean relative position of the statolith complex in respect to the distal cell wall (% of total cell length) increased from 24.0 +/- 0.5% in 1 g-grown roots to 38.8 +/- 0.8% in roots exposed for 24 min to microgravity, but remained smaller than in roots grown continuously in microgravity (48.0 +/- 0.7%). The properties of the statolith movement away from the distal pole of the statocyte were studied in roots grown for 24 h vertically under 1 g and then placed for 6 min on a fast rotating clinostat (50 rpm) or 180 degrees inverted. After 2 min of both treatments, the mean relative position of the statoliths increased by about 10% versus its initial position. Later on, the proximal displacement of amyloplasts slowed down under simulated weightlessness, while it proceeded at a constant velocity under 1 g inversion. In roots grown on the clinostat and then exposed to 1 g in the longitudinal direction, amyloplast sedimentation away from the central region of statocyte was similar at the beginning of distal and proximal 6-min 1-g stimulation. However, at the end of this period statolith displacement was more pronounced in proximal direction as compared to distal. It is proposed that statolith position in the statocyte of a vertical root is controlled by the force of gravity, however, the intracellular forces, first of all those generated by the network of the cytoskeleton, are manifested when an usual orientation of the organ is changed or the statocytes are exposed to microgravity and clinorotation.  相似文献   

2.
Three main phases are discerned in the gravitropic reaction: perception of a gravitational stimulus, its transduction, and fixation of the reaction resulting in bending of an organ. According to the starch-statolith hypothesis of Nemec and Haberlandt, amyloplasts in the structurally and functionally specialized graviperceptive cells (statocytes) sediment in the direction of a gravitational vector in the distal part of a cell while a nucleus is in the proximal one. If amyloplasts appear to act as gravity sensors, the receptors, which interact with sedimented amyloplasts, and next signaling are still unclear. An analysis of the structural-functional organization of cells in different root cap layers of such higher plants as pea, Arabidopsis thaliana, and Brassica rapa grown under 1 g, on the clinostats, and in microgravity, allows us to support the hypothesis that amyloplasts function as statoliths in statocytes, but they may not be only the passive statolithic mass. We propose that amyloplasts fulfill a more complex function by interacting with a receptor, which is a nucleus, in transduction of some signal to it. Gravity-induced statolith movement in certain order leads to a new functional connection between gravity susceptors--amyloplasts and a receptor--a nucleus receiving some signal presumedly of a mechanical or biochemical nature from the amyloplasts. During gravitropism, sugar signaling could induce expression of genes encoding auxin transport proteins in a nucleus giving the nucleus an intermediate role in signal trunsduction following perception.  相似文献   

3.
Key role in cell gravisensing is attributed to the actin cytoskeleton which acts as a mediator in signaling reactions, including graviperception. Despite of increased attention to the actin cytoskeleton, major gaps in our understanding of its functioning in plant gravisensing still remain. To fill these gaps, we propose a novel approach focused on the investigation of actin involvement in the development of columella cells and cells in the transition zone of roots submitted to clinorotation. Both statocytes and cells in the transition zone represent the postmitotic cells which take origin in root meristems and are specified into graviperceptive (root cap) and gravireacting (transition zone) root tissues. The aim of the research was to investigate and compare the microfilament arrangements in root cap statocytes and peripheral root tissues (epidermis and cortex cells) in the transition zone and to find out how the actin cytoskeleton is involved in their specification under clinostat conditions. So far, our experiments have shown that under clinorotation the cytoplasmic microfilament network in the cortex cells in the transition zone is significantly enhanced. It is suggested that more abundant cytoplasmic microfilaments could strengthen the cortical actin cytoskeleton arranged parallel with the cortical microtubules, which are found to be partially disorganized in this area. Due to microtubule disorganization, the functioning of cellulose-synthesizing machinery and proper deposition of cell wall might be affected and could cause the alterations in the growth mode. But, in our case growth of the cells in the transition zone under clinorotation was rather stable. Due to our opinion, general stability of cell growth under clinorotation is promoted by mutual functional interrelation between actin and tubulin cytoskeletons. It is suggested that a strengthened cortical actin cytoskeleton restricts the cell growth instead of disorganized microtubules.  相似文献   

4.
Calcium signaling has been implicated in plant graviperception. In order to investigate the role of intracellular calcium in the process, I used lithium ions (LiCl), which suppress inositol 1,4,5-trisphosphate (IP3) cycling and signaling by inhibiting inositol-1-phosphatase. After 4 h of gravistimulation, no curvature was observed in 81% of the roots of 5-day Pisum sativum seedlings pretreated with 5 mM LiCl. Structural features of statocyte ultrastructure in these roots were the following: loss of a cellular polarity, appearance of amyloplast clusters, condensed mitochondria, local dilations in a perinuclear space, increases in a relative volume of vacuoles. The intensity of a cytochemical reaction (pyroantimonate staining which detected Ca2+ ions) was moderate: the Ca2+ pyroantimonate deposits were observed in all organelles. There were few granules of this precipitate in a hyaloplasm of the statocytes. Mitochondria and vacuoles were found to contain more granules of the precipitate compared with the controls. Additionally, Ca(2+)-ATPase activity in the statocytes of pea roots pretreated with LiCl was approximately the same as in control roots. Data obtained by using inhibitor of inositol signaling suggest that the observed effects of LiCl on root gravicurvature and ultrastructure of root statocytes were due to effects on Ca2+ homeostasis, particularly on IP3-mediated release of intracellular Ca2+ which can be inhibited by inositol depletion. The work demonstrates the key role played by second messengers (Ca2+ and IP3) in a gravity perception and response.  相似文献   

5.
On a three-dimensional (3-D) clinostat, various plant organs developed statocytes capable of responding to the gravity vector. The graviresponse of primary roots of garden cress and maize grown on the clinostat was the same as the control roots, whereas that of maize coleoptiles was reduced. When maize seedlings were grown in the presence of 10(-4) M gibberellic acid and kinetin, the graviresponse of both roots and shoots was suppressed. The corresponding suppression of amyloplast development was observed in the clinostatted and the hormone-treated seedlings. Maize roots and shoots showed spontaneous curvatures in different portions on the 3-D clinostat. The hormone treatment did not significantly influence such an automorphic curvature. When the root cap was removed, maize roots did not curve gravitropically. However, the removal suppressed the automorphic curvatures only slightly. On the other hand, the removal of coleoptile tip did not influence its graviresponse, whereas the spontaneous curvature of decapitated coleoptiles on the clinostat was strongly suppressed. Also, cytochalasin B differently affected the gravitropic and the automorphic curvatures of maize roots and shoots. From these results it is concluded that the graviperception and the early processes of signal transmission are unnecessary for automorphoses under simulated microgravity conditions. Moreover, the results support the view that the amyloplasts act as statoliths probably via an interaction with microfilaments.  相似文献   

6.
Gravitropism of plant organs such as roots, stems and coleoptiles can be separated into four distinct phases: 1. perception (gravity sensing), 2. transduction of a signal into the target region and 3. the response (differential growth). This last reaction is followed by a straightening of the curved organ (4.). The perception of the gravitropic stimulus upon horizontal positioning of the organ (1.) occurs via amyloplasts that sediment within the statocytes. This conclusion is supported by our finding that submerged rice coleoptiles that lack sedimentable amyloplasts show no graviresponse. The mode of signal transduction (2.) from the statocytes to the peripheral cell layers is still unknown. Differential growth (3.) consists of a cessation of cell expansion on the upper side and an enhancement of elongation on the lower side of the organ. Based on the facts that the sturdy outer epidermal wall (OEW) constitutes the growth-controlling structure of the coleoptile and that growth-related osmiophilic particles accumulate on the upper OEW, it is concluded that the differential incorporation of wall material (presumably glycoproteins) is causally involved. During gravitropic bending, electron-dense particles ('wall-loosening capacity') accumulate on the growth-inhibited upper OEW. It is proposed that the autotropic straightening response, which is in part due to an acceleration of cell elongation on the curved upper side, may be attributable to an incorporation of the accumulated particles ('release of wall-loosening capacity'). This novel mechanism of autotropic re-bending and its implications for the Cholodny-Went hypothesis are discussed.  相似文献   

7.
The fundamental question of gravitational biology is how do plants perceive a gravity. Recent experimental results have demonstrated that Ca second-messenger system has an essential role in induction of graviresponsiveness. Our data, that stimuli of various nature cause a rise of hyaloplasm Ca level revealed by means of pyroantimonate method, as well as complete inhibition of the gravitropism in roots of pea seedlings, provide indirect but consistent evidence of this role of Ca ions. A possible explanation for these results is that they may be due to an unbalanced and undirectional influx of Ca ions in statocytes from cell walls or from intracellular Ca stores, while in the presence of the Earths 1 g vector, this process occurs directionally, along this vector. It is possible that a target for the gravity stimulus is the flux mechanism of Ca to statocytes, including participation of the phosphatidylinositol system and calmodulin. The data that have become available from space flight experiments will be reviewed and an attempt will be made to compare these results with ground-based observations.  相似文献   

8.
Elucidation of dorsal/ventral polarity and primary embryonic axis development in amphibian embryos requires an understanding of cytoplasmic rearrangements in fertile eggs at the biophysical, physiological, and biochemical levels. Evidence is presented that amphibian egg cytoplasmic components are compartmentalized. The effects of altered orientation to the gravitational vector (i.e., egg inversion) and alterations in gravity force ranging from hypergravity (centrifugation) to simulated microgravity (i.e., horizontal clinostat rotation) on cytoplasmic compartment rearrangements are reviewed. The behavior of yolk compartments as well as a newly defined (with monoclonal antibody) non-yolk cytoplasmic compartment, in inverted eggs and in eggs rotated on horizontal clinostats at their buoyant density, is discussed.  相似文献   

9.
Experiments on primary roots of Lepidium sativum L. have been performed on board the Bion-10 satellite. The experimental set-up was extremely miniaturized and completely automatic. The results demonstrate the effectiveness of the instrumentation. The spatial orientation, growth, root cap differentiation and statocyte structure of roots grown under microgravity (MG) have been compared with control roots grown on the ground (GC) and in a 1G-reference centrifuge in space (RC). Root length and cap shape did not differ between MG and control samples. Under MG, the mean distance of the statoliths from the distal cell wall of the statocytes increased significantly, the mean distance of the mitochondria decreased and the nucleus did not change its position in comparison to both controls. The number and the shape of the amyloplasts (statoliths) were not influenced by the space flight factors, but their size as well as their relative area in the cell decreased. The number of starch grains per statolith as well as their size and shape changed under MG. In MG and RC samples the number of lipid bodies in the statocytes was higher and the relative area larger than in GC samples. The relative area occupied by vacuoles was greater in RC statocytes than in GC and MG statocytes. These results partly confirm and, in addition, extend the data from earlier experiments in space.  相似文献   

10.
The rhizoids of the green alga Chara are tip-growing cells with a precise positive gravitropism. In rhizoids growing downwards the statoliths never sediment upon the cell wall at the very tip but keep a minimal distance of approximately 10 micrometers from the cell vertex. It has been argued that this position is attained by a force acting upon the statoliths in the basal direction and that this force is generated by an interaction between actin microfilaments and myosin on the statolith membrane. This hypothesis received experimental support from (1) effects of the actin-attacking drug cytochalasin, (2) experiments under microgravity conditions, and (3) clinostat experiments. Using video-microscopy it is now shown that this basipetal force also acts on statoliths during sedimentation. As a result, many statoliths in Chara rhizoids do not simply fall along the plumb line while sedimenting during gravistimulation, but move basipetally. This statolith movement is compared to the ones occurring in the unicellular Chara protonemata during gravistimulation. Dark-grown protonemata morphologically closely resemble the rhizoids but respond negatively gravitropic. In contrast to the rhizoids a gravistimulation of the protonemata induces a transport of statoliths towards the tip. This transport is mainly along the cell axis and not parallel to the gravity vector. It is stressed that the sedimentation of statoliths in Chara rhizoids and protonemata as well as in gravity sensing cells in mosses and higher plants is accompanied by statolith movements based on interactions with the cytoskeleton. In tip-growing cells these movements direct the statoliths to a definite region of the cell where they can sediment and elicit a gravitropic curvature. In the statocytes of higher plants the interactions of the statoliths with the cytoskeleton probably do not serve primarily to move the statoliths but to transduce mechanical stresses from the sedimenting statoliths to the plasma membrane.  相似文献   

11.
A three-dimensional (3-D) clinostat equipped with two rotation axes placed at right angles was constructed, and various growth processes of higher plants grown on this clinostat were compared with ground controls, with plants grown on the conventional horizontal clinostat, and with those under real microgravity in space. On the 3-D clinostat, cress roots developed a normal root cap and the statocytes showed the typical polar organization except a random distribution of statoliths. The structural features of clinostatted statocytes were fundamentally similar to those observed under real microgravity. The graviresponse of cress roots grown on the 3-D clinostat was the same as the control roots. On the 3-D clinostat, shoots and roots exhibited a spontaneous curvature as well as an altered growth direction. Such an automorphogenesis was sometimes exaggerated when plants were subjected to the horizontal rotation, whereas the curvature was suppressed on the vertical rotation. These discrepancies in curvature between the 3-D clinostat and the conventional ones appear to be brought about by the centrifugal force produced. Thus, the 3-D clinostat was proven as a useful device to simulate microgravity.  相似文献   

12.
Ionic and structural hetorogeneity of cells, tissues, and organs of plants are associated with a spectrum of electric characteristics such as bioelectric potentials, electrical conductance, and bioelectric permeability. An important determinant for the plant function is electric properties of the cell membranes and organelles which maintain energy and substance exchange with the environment. Enzymes and other biologically active substances have a powerful charge at the molecular level. Finally, all molecules, including those of water, represent dipoles, and this determines their reactive capacity. A major determinant is the bioelectric polarity of a plant is genetically predetermined and cannot be modified. It is an intrinsic structural feature of the organism whose evolution advent was mediated by gravity. An illustrative presentation of polarity is the downward growth of the roots and upward growth of stems in the Earth's gravitation field. However, gravity is a critical, but not the sole determinant of the plant organism polarization. Potent polarizing effects are exerted by light, the electromagnetic field, moisture, and other factors. It is known that plant cultivation in an upturned position is associated with impairment of water and nutrient uptake, resulting in dyscoordination of physiological processes, growth and developmental retardation. These abnormalities were characteristic when early attempts were made to grow plants in weightlessness conditions.  相似文献   

13.
Two species of newts (Urodela) and two types of clinostats for fast clinorotation (60 rpm) were used to investigate the influence of simulated weightlessness on regeneration and to compare results obtained with data from spaceflight experiments. Seven or fourteen days of weightlessness in Russian biosatellites caused acceleration of lens and limb regeneration by an increase in cell proliferation, differentiation, and rate of morphogenesis in comparison with ground controls. After a comparable time of clinorotation the results obtained with Triturus vulgaris using a horizontal clinostat were similar to those found in spaceflight. In contrast, in Pleurodeles waltl using both horizontal and radial clinostats the results were contradictory compared to Triturus. We speculate that different levels of gravity or/and species specific thresholds for gravitational sensitivity could be responsible for these contradictory results.  相似文献   

14.
The amyloplasts of root statocytes are considered to be the perceptors of gravity. However, their displacement and the starch they contain are not required for gravisensing. The mechanism of the transduction of gravistimulus remains therefore controversial. It is well known that the amplitude of the stimulus is dependent upon the intensity of the acceleration and the inclination of the root with respect to gravity. This strongly supports the hypothesis that the stimulus results in a mechanical effect (pressure or tension) on a cellular structure. Three cellular components are proposed as possible candidates for the role of transducer: the actin filaments, the endoplasmic reticulum and the plasma membrane with its ion channels. Recent results obtained in the frame of the IML 1 Mission of Spacelab show that the endoplasmic reticulum should rather be responsible for the termination of the stimulus. The contacts of amyloplasts with the distal ER could therefore be involved in the regulation of root growth.  相似文献   

15.
Plant seedlings exhibit automorphogenesis on clinostats. The occurrence of automorphogenesis was confirmed under microgravity in Space Shuttle STS-95 flight. Rice coleoptiles showed an inclination toward the caryopsis in the basal region and a spontaneous curvature in the same adaxial direction in the elongating region both on a three-dimensional (3-D) clinostat and in space. Both rice roots and Arabidopsis hypocotyls also showed a similar morphology in space and on the 3-D clinostat. In rice coleoptiles, the mechanisms inducing such an automorphic curvature were studied. The faster-expanding convex side of rice coleoptiles showed a higher extensibility of the cell wall than the opposite side. Also, in the convex side, the cell wall thickness was smaller, the turnover of the matrix polysaccharides was more active, and the microtubules oriented more transversely than the concave side, and these differences appear to be causes of the curvature. When rice coleoptiles grown on the 3-D clinostat were placed horizontally, the gravitropic curvature was delayed as compared with control coleoptiles. In clinostatted coleoptiles, the corresponding suppression of the amyloplast development was also observed. Similar results were obtained in Arabidopsis hypocotyls. Thus, the induction of automorphogenesis and a concomitant decrease in graviresponsiveness occurred in plant shoots grown under microgravity conditions.  相似文献   

16.
Rotation at 4, 10, 50 and 100 rpm on a horizontal clinostat and in microgravity exerts limited effects on the morphogenesis of lettuce and cress root statocytes and statoliths if compared with the vertical control or 1 g spaceflight reference centrifuge. However, the average distance of statoliths from the distal wall increases. The pattern of plastid location of microgravity-grown and that of clino-rotated samples has been determined at 10, 50, and 100 rpm. Experiments on the centrifuge-clinostat and spaceflight centrifuge (acceleration forces of 0.005 to 1 g) revealed that the average statolith location depends on the amplitude of acropetally or basipetally directed mass acceleration. Decreasing the acropetally directed force from 1 g to 0.4 g dislocates statoliths towards the cell center possibly mediated by the elastic forces of the cytoskeleton. In statocytes formed on the clinostat or in microgravity, the majority of statoliths are located at the center of the cell. To force the statoliths from the center of the statocyte towards one of its poles, a threshold mass acceleration of 0.01 g is required. Statocytes with centrally-located statoliths are considerably more effective in transducing a gravistimulus than those with distally-located plastids. The latent time of the graviresponse is shorter and the response itself is enhanced in roots grown on the clinostat compared to vertically grown samples. The early phases of graviperception are independent of root growth conditions since presentation time and g-threshold are similar for roots grown stationary and those on a clinostat. We propose a sequence of events in gravitropic stimulation that considers not only the lateral displacement of statoliths, as predicted by the starch-statolith hypothesis, but also its longitudinal motion, together with differential gravisensitivity of mechanotransducing structures along the lower-most longitudinal cell wall.  相似文献   

17.
The debate about whether gravity sensing relies upon statoliths (amyloplasts that sediment) has intensified with recent findings of gravitropism in starchless mutants and of claims of hydrostatic gravity sensing. Starch and significant plastid sedimentation are not necessary for reduced sensing in mutant roots, but plastids might function here if there were a specialized receptor for plastid mass e.g. in the ER. Alternatively, components in addition to amyloplasts might provide mass for sensing. The nucleus is dense and its position is regulated, but no direct data exist for its role in sensing. If the weight of the protoplast functioned in sensing, why would there be specific cytological specializations favoring sedimentation rather than cell mass? Gravity has multiple effects on plants in addition to gravitropism. There may be more than one mechanism of gravity sensing.  相似文献   

18.
Although the orientation of mycelial hyphal growth is usually independent of the gravity vector, individual specialised hyphae can show response to gravity. This is exemplified by the sporangiophore of Phycomyces, but the most striking gravitropic reactions occur in mushroom fruit bodies. During the course of development of a mushroom different tropisms predominate at different times; the young fruit body primordium is positively phototropic, but negative gravitropism later predominates. The switch between tropisms has been associated with meiosis. The spore-bearing tissue is positively gravitropic and responds independently of the stem. Bracket polypores do not show tropisms but exhibit gravimorphogenetic responses: disturbance leads to renewal of growth producing an entirely new fruiting structure. Indications from both clinostat and space flown experiments are that the basic form of the mushroom (overall tissue arrangement of stem, cap, gills, hymenium, veil) is established independently of the gravity vector although maturation, and especially commitment to the meiosis-sporulation pathway, requires the normal gravity vector. The gravity perception mechanism is difficult to identify. The latest results suggest that disturbance of cytoskeletal microfilaments is involved in perception (with nuclei possibly being used as statoliths), and Ca2(+)-mediated signal transduction may be involved in directing growth differentials.  相似文献   

19.
An experiment using plant protoplasts has been accepted for the IML-1 Space Shuttle mission scheduled for 1991. Preparatory experiments have been performed using both fast and slow rotating clinostats and in orbit to study the effect of simulated and real weightlessness on protoplast regeneration. Late access to the space vehicles before launch has required special attention since it is important to delay cell wall regeneration until the samples are in orbit. On a flight on Biokosmos 9 ("Kosmos-2044") in September 1989 some preliminary results were obtained. Compared to the ground control, the growth of both carrot and rapeseed protoplasts was decreased by 18% and 44% respectively, after 14 days in orbit. The results also indicated that there is less cell wall regeneration under micro-g conditions. Compared to the ground controls the production of cellulose in rapeseed and carrot flight samples was only 46% and 29% respectively. The production of hemicellulose in the flight samples was 63% and 67% respectively of that of the ground controls. In both cases all samples reached the stage of callus development. The peroxidase activity was also found to be lower in the flight samples than in the ground controls, and the number of different isoenzymes was decreased in the flight samples. In general, the regeneration processes were retarded in the flight samples with respect to the ground controls. From a simulation experiment for IML-1 performed in January 1990 at ESTEC, Holland, regenerated plants have been obtained. These results are discussed and compared to the results obtained on Biokosmos 9. Protoplast regeneration did not develop beyond the callus stage in either the flight or the ground control samples from the Biokosmos 9 experiment.  相似文献   

20.
Gravitropic tip growth of Chara rhizoids is dependent on the presence and functional interaction between statoliths, cytoskeleton and the tip-growth-organizing complex, the Spitzenkorper. Microtubules are essential for the polar cytoplasmic zonation but are excluded from the apex and do not play a crucial role in the primary steps of gravisensing and graviresponse. Actin filaments form a dense meshwork in the subapical zone and converge into a prominent apical actin patch which is associated with the endoplasmic reticulum (ER) aggregate representing the structural center of the Spitzenkorper. The position of the statoliths is regulated by gravity and a counteracting force mediated by actomyosin. Reducing the acceleration forces in microgravity experiments causes a basipetal displacement of the statoliths. Rhizoids grow randomly in all directions. However, they express the same cell shape and cytoplasmic zonation as ground controls. The ultrastructure of the Spitzenkorper, including the aggregation of ER, the assembly of vesicles in the apex, the polar distribution of proplastids, mitochondria, dictyosomes and ER cisternae in the subapical zone is maintained. The unaltered cytoskeletal organization, growth rates and gravitropic responsiveness indicate that microgravity has no major effect on gravitropic tip-growing Chara rhizoids. However, the threshold value of gravisensitivity might be different from ground controls due to the altered position of statoliths, a possibly reduced amount of BaSO4 in statoliths and a possible adaptation of the actin cytoskeleton to microgravity conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号