首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
含Cs盐的HTPB/AP/Al复合推进剂特性研究   总被引:1,自引:0,他引:1  
采用高倍率的扫描电镜观察了Cs盐的微观形貌,利用最小自由能法计算了不同含量Cs盐的复合推进剂能量性能并进行了测试,对Cs盐、含Cs盐复合推进剂的安全性能(撞击感度和摩擦感度)进行了评价,并对不同含量Cs盐推进剂的燃烧性能和燃烧火焰结构等性能进行了研究。结果表明,Cs盐的颗粒粒径较大,表面凹凸不平很不规则;含Cs盐复合推进剂的能量随Cs盐质量分数的增加稍有减小,推进剂密度从1.766 g/cm3提高到1.851 g/cm3;相对于AP,Cs盐和含Cs盐复合推进剂的感度均较低,当Cs盐含量为6%时,复合推进剂的机械感度最低,说明Cs盐在复合推进剂中应用是安全可行的;复合推进剂的燃速随Cs盐质量分数的增加而增大,当Cs盐含量为6%时,复合推进剂的压力指数降低幅度最大。  相似文献   

2.
为了解决含硼富燃料推进剂在氧弹内燃烧效率低、实验测试值不能正确表征实际燃烧热值的问题,研究了含硼富燃料推进剂燃烧热值测试过程中试样质量和充氧压强对测试结果的影响,在氧弹安全承载范围内,试样质量越大、充氧压强越大,含硼富燃料推进剂燃烧越完全。使用有机溶剂溶解后挥发的混合方式,将作为助燃剂的自制ZS与加工成20目含硼富燃料推进剂实现紧密结合,经过一系列工艺处理制得试样。根据含硼富燃料推进剂在氧弹内的燃烧特点设计加工了专用钨坩埚,使用改进型氧弹式量热仪对试样进行热值测试。实验结果表明,助燃法测试含硼富燃料推进剂的燃烧热值较为有效,解决了含硼富燃料推进剂在氧弹内燃烧不完全以及测试值不能正确表征理论燃烧热值的问题,具有较高的准确性和可靠性。  相似文献   

3.
氧化剂和团聚硼粒度对富燃料推进剂燃速特性的影响   总被引:1,自引:0,他引:1  
考察了细AP和团聚硼含量对含硼富燃料推进剂燃速特性的影响.结果表明,随细AP含量和团聚硼含量的增大,推进剂燃速增加,燃速压强指数也呈增加趋势.同时,以BDP模型为基础,将硼粒度对推进剂燃速特性的影响引入燃速表达式,表达式表明细AP和团聚硼有利于提高氧化剂的燃烧表面积在燃面上的比例,从而有利于提高推进剂的燃速.  相似文献   

4.
基于硼氢盐化合物具有高燃速、高燃烧热值等优点,探索了两种十氢十硼酸金属盐化合物(BHM)在富燃料推进剂中应用前景。采用DCAT 21型动态接触角/表面张力仪测量了BHM、AP、Mg、团聚硼、HTPB的接触角,计算了固体组分与HTPB之间的粘合功W和铺展系数S,结果显示几种固体组分与HTPB粘合剂相互作用大小次序为AP/HTPBBH-2/HTPB团聚硼/HTPBMg/HTPBBH-1/HTPB,且SHTPB/BH-1较小,因为BH-1不能充分浸润于HTPB粘合剂,界面间产生排斥作用,导致含硼氢盐BH-1推进剂内部出现裂纹。还研究了含硼氢盐BH-2富燃料推进剂的流变性能、能量性能和燃烧性能。结果表明,用硼氢盐BH-2替代团聚硼粉,能降低推进剂药浆的表观粘度和屈服值,提高推进剂实测热值,其中,BH-2含量30%的B-2配方,推进剂药浆的屈服值为44.5 Pa,表观粘度为188 Pa·s,燃烧效率达到了93.2%。发现硼氢盐使推进剂燃速降低,且产生大量的燃烧残渣,这与燃烧产物中凝聚相碳(C)的大幅增加有关。依据硼氢盐分解和燃烧特点,认为其适应于燃料冲压发动机。  相似文献   

5.
含硼富燃料推进剂低压燃烧模型   总被引:3,自引:1,他引:2  
针对含硼富燃料推进剂低压燃烧的凝相反应和气相燃烧具有气相反应在燃面上的惰性“沉积层”中进行、气相放热主要由AP与HTPB分解产物的扩散燃烧产生的特点,以BDP模型为基础,建立了含硼富燃料推进剂低压燃烧模型,分析了“沉积层”对气相燃烧的影响。结果分析认为,“沉积层”的存在是含硼富燃料推进剂能在较低压强下维持稳定燃烧,并具有较高燃速和压强指数的主要原因。燃烧模型实质是对BDP模型的拓展,利用该模型定性解释了含硼富燃料推进剂低压下特有的燃烧现象。  相似文献   

6.
在价电子燃烧模型的基础上引进分形理论,提出复合固体推进剂的价电子分形燃烧模型,在此基础上进行了高能固体推进剂燃速和压强指数的模拟计算,研究了固体填料粒径和压力对燃速的影响规律。结果表明,价电子分形燃烧模型适用于高能固体推进剂的燃烧性能计算,燃速及压强指数模拟计算结果与测试结果吻合较好,大部分误差在±10%范围以内。  相似文献   

7.
为抑制高铝含量固体推进剂燃烧产物的团聚,研究铝含量为18%、含有机氟化物(OF)的固体推进剂不同燃烧区域中铝粒子燃烧的特性。利用高速摄影系统研究熔铝粒子在推进剂燃面的团聚过程;通过对推进剂燃烧火焰特定位置的低温淬熄,获得终止燃烧的含铝固体粒子,并进行形貌和成分分析;使用动态粒径测试系统、激光粒度仪分别对推进剂燃烧火焰区及最终固体燃烧产物的粒子尺寸进行了表征。结果表明,有机氟化物产生的气态氟化烃可抑制熔铝粒子在燃烧表面的团聚,可使推进剂火焰中燃铝粒子的尺寸降低约50%,固体燃烧产物中大尺寸(D≥10μm)颗粒的体积分数下降约74.2%。燃烧性能测试结果表明,有机氟化物使推进剂的爆热及理论火焰温度分别下降9.5%和8.8%,燃速也发生了降低。  相似文献   

8.
团聚硼对富燃料推进剂燃烧性能的影响   总被引:2,自引:0,他引:2  
考察了不同粒度、不同包覆剂的团聚硼对含硼富燃料推进剂燃烧性能的影响。结果表明,随团聚硼颗粒粒度的增大,推进剂的燃速增加,低压可燃极限降低,但燃速压强指数呈下降的趋势;包覆材料AP、L iF有利于提高推进剂的燃速,降低低压可燃极限,但不利于提高燃速压强指数。  相似文献   

9.
研究了固体推进剂中氧化剂AP的平均粒度对其撞击感度和摩擦感度的影响,以及当AP加入改性双基推进剂中后,其平均粒度对改性双基推进剂燃烧速度的影响。揭示了影响AP撞击感度、摩擦感度以及推进剂燃烧速度的主要原因,即AP颗粒大小与引起其分解所需的临界电子激发能之间的关系。这对超细AP在推进剂中的安全合理应用具有重要指导意义。  相似文献   

10.
含硼富燃料推进剂燃烧表面"沉积层"研究   总被引:1,自引:0,他引:1  
针对含硼富燃料推进剂低压燃烧时燃烧表面产生“沉积层”的现象,结合该推进剂的燃烧过程,分析了“沉积层”的形成机理,建立了“沉积层”影响燃气流动的数学模型,研究了其对气相火焰高度的影响。结果表明,“沉积层”使气相火焰高度降低,传给燃面的热流密度占气相总热流密度的百分比增大,有更多的气相燃烧产生的热量反馈回燃烧表面,即使含硼富燃料推进剂燃烧过程中气相作用增强,易于在低压下维持稳定燃烧,并具有相对高的燃速和压强指数。这为含硼富燃料推进剂用于冲压发动机提供了有利的理论支持。  相似文献   

11.
为提高纳米CuCr2O4(n-CuCr2O4)燃烧效能,阐明其促进HTPB复合推进剂燃烧的机理,研究了n-CuCr2O4分散方法,探讨了n-CuCr2O4对复合推进剂安全性和燃烧性能的影响。结果表明,癸二酸二异辛酯(DOS)可使n-CuCr2O4颗粒充分分散,颗粒粒径为50 nm。将DOS与乙酸乙酯混合作为分散液,n-CuCr2O4/分散液为12/100,超声分散30 min, n-CuCr2O4可以有效分散,使推进剂燃速提高1.5%。在含量均为2.5%时,含n-CuCr2O4推进剂的燃速虽然低于含卡托辛的,但是摩擦感度和撞击感度均降低。与微米CuCr2O4相比,n-CuCr2  相似文献   

12.
纳米铝燃料研究进展   总被引:1,自引:0,他引:1  
纳米铝代替传统微米铝作为固体火箭推进剂的金属燃料,有助于提高推进剂的燃速、比冲和降低特征信号等。综述了纳米铝燃料合成、活性保持、高温氧化反应机理和在含能材料体系中的分散性能等方面的研究进展,分析了关键技术的发展趋势。最后,给出了下一阶段纳米铝燃料的研究建议:探索各向异性纳米铝燃料合成途径,丰富纳米铝燃料类别;在不降低铝燃料能量的前提下,进行修饰、包覆,提高纳米铝燃料活性;弄清不同反应速率下纳米铝燃料氧化反应过程,明晰纳米铝燃料氧化反应机理;重视铝燃料在含能材料中的分散技术、表征手段,揭示分散状况对燃烧稳定性的影响规律。  相似文献   

13.
对于固体推进剂火箭燃烧可采用一维模型预测固体推进剂火箭发动机的侵蚀燃烧特性。用取决于不同燃烧速率的速度来表示固体推进剂的侵蚀燃烧。数值积分控制偏微分方程就可得到分析结果。使用非定常公式预测固体推进剂侵蚀燃烧特性。计算了各种不同药形的复合推进剂和双基推进剂的侵蚀燃烧特性。测出了各种不同药形装填密度(药柱初始通孔面积与喉面积之比)对压力时间曲线的影响。现有分析指出,装填密度是确定某一特定药形及化学成分的推进剂侵蚀燃烧特性的最重要参数之一。研究表明低燃速推进剂比高燃速推进剂反映出具有较大的侵蚀燃烧效应。同时也表明长方药形与圆柱药形相比具有较大的初始压力峰,相反压力很快就稳定到一般与装填密度无关的平衡压力。  相似文献   

14.
在现有靶线法燃速测试仪的接线柱上加装绝缘防烧蚀挡板,解决了燃烧过程中的非正常中断问题。设计并安装过滤除尘器,解决了残渣污染气体管路的问题。在燃烧室上连接压强传感器,实现了燃烧过程中压强变化的监测。实验结果表明,改进后的靶线法燃速测试仪推进剂药条燃烧过程准确,实验后清理简便可靠,且保障了管路的密封,实现了多残渣富燃料推进剂燃速的正确测试。  相似文献   

15.
镁铝富燃料推进剂燃烧性能研究   总被引:3,自引:0,他引:3  
为了研究镁铝富燃料推进剂燃烧性能,采用捏合机混合物料、真空浇注、恒温固化的方法制备推进剂试样,用靶线法测试推进剂燃速(0.5~2.0 MPa),用Vieille经验公式r=apn计算压强指数。研究表明,细粒度AP含量增加,燃速逐渐增加,而压强指数先升高后降低。采用复合催化剂GFP/Fe2O3可同时提高燃速和压强指数。当催化剂质量含量为5%时,改变GFP/Fe2O3比对推进剂的燃速及压强指数的影响与氧化剂AP级配有关。对于细粒度AP含量高的配方,GFP/Fe2O3对燃速和压强指数影响较大。金属含量对燃速影响较大,对压强指数影响很小。而Mg/Al比对燃速和压强指数影响都很小。随着氧化剂中KP含量增大,燃速呈下降趋势,压强指数先升高后下降。  相似文献   

16.
碳硼烷衍生物具有燃烧热值高,与配方组分相容性好等特点。在推进剂领域,现阶段主要将其用作高燃速配方的燃速调节剂,可明显提升燃速并兼具其他功能;将其作为高性能燃料可改善富燃料推进剂的燃烧性能、能量性能等,具有良好发展前景。简介了碳硼烷的结构、性质。阐述了碳硼烷衍生物的主要合成方法,并从关键原材料的制备角度分析了制约碳硼烷衍生物应用发展的因素。概括了碳硼烷的四种改性途径。综述了碳硼烷衍生物在国内外军民领域的应用进展,主要总结了其作为功能化燃速调节剂、高性能燃料在推进剂中的研究现状。简介了其在耐高温材料、生物医学材料、光电材料等领域的应用情况。最后,指出未来应针对富燃料推进剂的需求强化功能化碳硼烷衍生物的合成及使用性能研究。  相似文献   

17.
采用高倍率的扫描电镜观察了Cs盐的微观形貌,利用最小自由能法计算了不同含量Cs盐的复合推进剂能量性能并进行了测试,对Cs盐、含Cs盐复合推进剂的安全性能(撞击感度和摩擦感度)进行了评价,并对不同含量Cs盐推进剂的燃烧性能和燃烧火焰结构等性能进行了研究.结果表明,Cs盐的颗粒粒径较大,表面凹凸不平很不规则;含Cs盐复合推...  相似文献   

18.
根据呈正、负压力指数燃速特性的固体推进剂的稳态燃烧模型,导出了一个新的压力响应函数公式,它可用来说明燃速压力指数为零、正、负各类推进剂的压力耦合现象。燃烧中的推进剂被划分为两部份:一部份是由熔化了的粘合剂所覆盖的氧化剂表面与其相对应的粘合剂表面所组成,而另一部份则由未被覆盖的氧化剂表面同剩下的粘合剂表面组成。与以往的各类模型不同,在上述的前一部份燃烧表面的燃烧中,考虑了氧化剂在熔化粘合剂覆盖的条件下存在着反向气化和凝相反应,故使所得的压力响应函数的实部在推进剂稳态燃速的压力指数为零或负值时也可为正值。利用所获得的压力响应函数的表达式对试验用推进剂(S04-5A)作了定量计算,计算结果满意地说明了,负压力指数推进剂在氧化剂被熔化粘合剂大面积复盖时也存在不稳定燃烧的现象。这不仅克服了以往所有压力响应函数表达式均难以用于负压力指数推进剂的缺陷,而且也从一个侧面反映了呈正、负压力指数燃速特性的固体推进剂稳态燃烧模型的正确性。  相似文献   

19.
本文基于PU/AP和HTPB/AP复合固体推进剂在不同压力下中止燃烧的燃面采用X射线光电子能谱的测试结果,对燃面上氧化剂AP颗粒表面受熔化粘合剂复盖的面积分数进行了半定量计算。结果表明,在燃烧压力大于1.96MPa时,两种推进剂燃面上的粘合剂复盖分数,随压力上升而增加。这一结果将有助于复合固体推进剂稳态燃烧模型的深化和改进。  相似文献   

20.
膏体富燃料推进剂配方研究   总被引:3,自引:0,他引:3  
研究了可用于双射程冲压发动机的膏体富燃料推进剂。结果表明,以PEPA/EG为粘合剂、无定型硼粉为燃料添加剂时,推进剂的实测热值可达28.7 M J/kg。使用经表面处理的无定型硼粉,加入量可在40%以上。膏体富燃料推进剂具有剪切变稀的性质,其流动指数和稠度系数随温度的上升呈下降趋势。配方的低压可燃极限为0.2~0.3 MPa,燃速r0.5MPa>12 mm/s,压强指数约为0.43。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号