首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ontogeny of plants under various gravity condition.   总被引:2,自引:0,他引:2  
The results of experiments performed under conditions of microgravity (MG) or under its simulation on the horizontal clinostat (HC) with the callus, seedlings of various species and embryogenic structures have revealed a definite role of gravity as an ecological factor in the processes of cytomorphogenesis, growth, and development. The transformation of differentiated somatic cells of arabidopsis seed into undifferentiated callus was not inhibited under MG, though modifications of the whole callus morphology and of mean cell and nucleus size were observed. The morphogenesis of polar structures such as root-hair bearing cells of Lactuca primary root has been shown to be modified in the course of differentiation under mass acceleration diminished below 0.1 g. Seed germination and seedling morphogenesis under MG follow their normal course, but a significant stimulation of shoot growth with no effect on primary root growth has been determined. A successful in vitro regeneration of Nicotiana tabacum plantlets from leaf cells and subsequent formation of shoots and roots on a continuously rotating HC as well as the formation of viable seeds during seed-to-seed growth of Arabidopsis plants under MG have indicated that gravity plays but a limited role in the processes of embryogenesis and organogenesis.  相似文献   

2.
In order to evaluate the effects of gravity on growing plants, we conducted ground based long-term experiments with dwarf wheat, cultivar Apogee and Chinese cabbage, cultivar Khibinskaya. The test crops had been grown in overhead position with HPS lamp below root module so gravity and light intensity gradients had been in opposite direction. Plants of the control crop grew in normal position under the same lamp. Both crops were grown on porous metallic membranes with stable -1 kPa matric potential on their surface. Results from these and other studies allowed us to examine the differences in growth and development of the plants as well as the root systems in relation to the value of the gravity force influence. Dry weight of the roots from test group was decreased in 2.5 times for wheat and in 6 times - at the Chinese cabbage, but shoot dry biomass was practically same for both test and control versions. A harvest index of the test plants increased substantially. The data shows, that development of the plants was essentially changed in microgravity. The experiments in the space greenhouse Svet aboard the Mir space station proved that it is possible to compensate the effects of weightlessness on higher plants by manipulating gradients of environmental parameters (i.e. photon flux, matric potential in the root zone, etc.). However, the average productivity of Svet concerning salad crops even in ground studies did not provide more than 14 g fresh biomass per day. This does not provide a sufficient level of supplemental nutrients to the crew of the ISS. A cylindrical design of a space plant growth chamber (SPGC) allows for maximal productivity in presence of very tight energy and volume limitations onboard the ISS and provides a number of operational advantages. Productivity from this type of SPGF with a 0.5 kW energy utilization when salad growing would provide approximately 100 g of edible biomass per day, which would almost satisfy requirements for a crew of two in vitamin C and carotene and partly vitamin B group as well as rough fiber.  相似文献   

3.
The experiments have been carried out with lettuce shoots on board the Salyut-7 orbital station, the Kosmos-1667 biological satellite and under ground conditions at 180° plant inversion. By means of the centrifuge Biogravistat-1M the threshold value of gravitational sensitivity of lettuce shoots has been determined on board the Salyut-7 station. It was found to be equal to 2.9 × 10−3g for hypocotyls and 1.5 × 10−4g for roots. The following results have been received in the experiment performed on board the Kosmos-1667 satellite: a) under microgravity the proliferation of the meristem cells and the growth of roots did not differ from the control; b) the growth of hypocotyls in length was significantly enhanced in microgravity; c) under microgravity transverse growth of hypocotyls (increase in cross sectional area) was significantly increased due to enhancement of cortical parenchyma cell growth. At 180° inversion in Earth's gravity root extension growth and rate of cell division in the root apical meristem were decreased. The determination of DNA-fuchsin value in the nuclei of the cell root apexes showed that inversion affected processess of the cell cycle preceeding cytokinesis.  相似文献   

4.
比较研究了SJ-8返回式卫星留轨舱微重力条件与地面三维回转模拟微重力条件下青菜生长与发育情况.研究发现空间微重力条件下青菜开花过程需要大约18 h,明显长于地面对照5 h左右.回转器模拟实验结果表明,改变重力影响了花瓣的伸展与发育及花粉的产量,回转条件下花粉细胞中的微管排列明显不同于静止对照.细胞骨架受到干扰可能是改变重力条件下花粉产量降低的原因之一.本研究首次报道了在空间飞行试验中成功地采用了显微实时图像技术观察植物的开花过程,并获得了从花蕾到开花结束各阶段清晰的图像.   相似文献   

5.
This experiment was conducted as part of a risk mitigation payload aboard the Space Shuttle Atlantis on STS-101. The objectives were to test a newly developed water delivery system, and to determine the optimal combination of water volume and substrate for the imbibition and germination of flax (Linum usitatissimum) seeds in space. Two different combinations of germination paper were tested for their ability to absorb, distribute, and retain water in microgravity. A single layer of thick germination paper was compared with one layer of thin germination paper under a layer of thick paper. Paper strips were cut to fit snugly into seed cassettes, and seeds were glued to them with the micropyle ends pointing outward. Water was delivered in small increments that traveled through the paper via capillary action. Three water delivery volumes were tested, with the largest (480 microliters) outperforming the 400 microliters and 320 microliters volumes for percent germination (90.6%) and root growth (mean=4.1 mm) during the 34-hour spaceflight experiment. The ground control experiment yielded similar results, but with lower rates of germination (84.4%) and shorter root lengths (mean=2.8 mm). It is not clear if the roots emerged more quickly in microgravity and/or grew faster than the ground controls. The single layer of thick germination paper generally exhibited better overall growth than the two layered option. Significant seed position effects were observed in both the flight and ground control experiments. Overall, the design of the water delivery system, seed cassettes and the germination paper strip concept was validated as an effective method for promoting seed germination and root growth under microgravity conditions.  相似文献   

6.
Function of the cytoskeleton in gravisensing during spaceflight.   总被引:12,自引:0,他引:12  
Since astronauts and cosmonauts have significant bone loss in microgravity we hypothesized that there would be physiological changes in cellular bone growth and cytoskeleton in the absence of gravity. Investigators from around the world have studied a multitude of bone cells in microgravity including Ros 17/2.8, Mc3T3-E1, MG-63, hFOB and primary chicken calvaria. Changes in cytoskeleton and extracellular matrix (ECM) have been noted in many of these studies. Investigators have noted changes in shape of cells exposed to as little as 20 seconds of microgravity in parabolic flight. Our laboratory reported that quiescent osteoblasts activated by sera under microgravity conditions had a significant 60% reduction in growth (p<0.001) but a paradoxical 2-fold increase in release of the osteoblast autocrine factor PGE2 when compared to ground controls. In addition, a collapse of the osteoblast actin cytoskeleton and loss of focal adhesions has been noted after 4 days in microgravity. Later studies in Biorack on STS-76, 81 and 84 confirmed the increased release of PGE2 and collapse of the actin cytoskeleton in cells grown in microgravity conditions, however flown cells under 1 g conditions maintained normal actin cytoskeleton and fibronectin matrix. The changes seen in the cytoskeleton are probably not due to alterations in fibronectin message or protein synthesis since no differences have been noted in microgravity. Multiple investigators have observed actin and microtubule cytoskeletal modifications in microgravity, suggesting a common root cause for the change in cell architecture. The inability of the O g grown osteoblast to respond to sera activation suggests that there is a major alteration in anabolic signal transduction under microgravity conditions, most probably through the growth factor receptors and/or the associated kinase pathways that are connected to the cytoskeleton. Cell cycle is dependent on the cytoskeleton. Alterations in cytoskeletal structure can block cell growth either in G1 (F-actin microfilament collapse), or in G2/M (inhibition of microtubule polymerization during G2/M-phase). We therefore hypothesize that microgravity would inhibit growth in either G1, or G2/M.  相似文献   

7.
在长期空间飞行过程中, 骨质丢失是一个严重问题. 羟基磷灰石(HAP)晶体是骨骼的主要成分, 骨骼中的胶原蛋白纤维在HAP生长结晶过程中起到关键作用. 研究了胶原蛋白纤维化过程在模拟微重力和常重力条件下的变化, 对以胶原 蛋白纤维作为模板生长出的HAP晶体形貌进行了观察. 结果表明, 不同浓度胶原蛋白溶液中形成的胶原蛋白纤维, 其内部孔隙数量和尺寸在模拟微重力条件下要明显大于常重力条件下, 胶原蛋白纤维内部孔隙的分布也不同于常重力条 件下的结果. 以模拟微重力条件下形成的胶原蛋白纤维为模板生长出的HAP 晶体主要为立方体状, 而以常重力条件下形成的胶原蛋白纤维为模板生长出的 HAP晶体形貌主要为板状. 该结果有助于未来进一步阐明空间骨质丢失的机理.   相似文献   

8.
Stem growth of Prunus trees under simulated microgravity conditions was examined using a three-dimensional clinostat. The stems elongated with bending under such conditions. Stem elongation and leaf expansion were both promoted, whereas the formation of xylem in the secondary thickening growth was inhibited under the simulated microgravity condition. In secondary xylem, sedimentable amyloplasts were observed in the 1g control. The present results suggest that stem elongation and leaf expansion may be inhibited at 1g, while growth direction and secondary xylem formation depend on a gravity stimulus. A space experiment is expected to advance research on thickening growth in trees.  相似文献   

9.
Growth of pea epicotyl in low magnetic field implication for space research   总被引:2,自引:0,他引:2  
A magnetic field is an inescapable environmental factor for plants on the earth. However, its impact on plant growth is not well understood. In order to survey how magnetic fields affect plant, Alaska pea seedlings were incubated under low magnetic field (LMF) and also in the normal geo-magnetic environment. Two-day-old etiolated seedlings were incubated in a magnetic shield box and in a control box. Sedimentation of amyloplasts was examined in the epicotyls of seedlings grown under these two conditions. The elongation of epicotyls was promoted by LMF. Elongation was most prominent in the middle part of the epicotyls. Cell elongation and increased osmotic pressure of cell sap were found in the epidermal cells exposed to LMF. When the gravitational environment was 1G, the epicotyls incubated under both LMF and normal geomagnetic field grew straight upward and amyloplasts sedimented similarly. However, under simulated microgravity (clinostat), epicotyl and cell elongation was promoted. Furthermore, the epicotyls bent and amyloplasts were dispersed in the cells in simulated microgravity. The dispersion of amyloplasts may relate to the posture control in epicotyl growth under simulated microgravity generated by 3D clinorotation, since it was not observed under LMF in 1G. Since enhanced elongation of cells was commonly seen both at LMF and in simulated microgravity, all elongation on the 3D-clinostat could result from pseudo-low magnetic field, as a by-product of clinorotation. (i.e., clinostat results could be based on randomization of magnetic field together with randomization of gravity vector.) Our results point to the possible use of space for studies in magnetic biology. With space experiments, the effects of dominant environmental factors, such as gravity on plants, could be neutralized or controlled for to reveal magnetic effects more clearly.  相似文献   

10.
Growth of dark-grown Arabidopsis hypocotyls was suppressed under hypergravity conditions (300 g), or was stimulated under microgravity conditions in space (Space Shuttle STS-95). The mechanical extensibility of cell walls decreased and increased under hypergravity and microgravity conditions, respectively. The amounts of cell wall polysaccharides (pectin, hemicellulose-I, hemicellulose-II and cellulose) per unit length of hypocotyls increased under hypergravity conditions, and decreased under microgravity conditions. The amount and the molecular mass of xyloglucans also increased under the hypergravity conditions, while those decreased under microgravity conditions. The activity of xyloglucan-degrading enzymes extracted from hypocotyl cell walls decreased and increased under hypergravity and microgravity conditions, respectively. These results indicate that the amount and the molecular mass of xyloglucans are affected by the magnitude of gravity and that such changes are caused by changes in xyloglucan-degrading activity. Modifications of xyloglucan metabolism as well as the thickness of cell walls by gravity stimulus may be the primary event determining the cell wall extensibility, thereby regulating the growth rate of Arabidopsis hypocotyls.  相似文献   

11.
A three-dimensional (3-D) clinostat equipped with two rotation axes placed at right angles was constructed, and various growth processes of higher plants grown on this clinostat were compared with ground controls, with plants grown on the conventional horizontal clinostat, and with those under real microgravity in space. On the 3-D clinostat, cress roots developed a normal root cap and the statocytes showed the typical polar organization except a random distribution of statoliths. The structural features of clinostatted statocytes were fundamentally similar to those observed under real microgravity. The graviresponse of cress roots grown on the 3-D clinostat was the same as the control roots. On the 3-D clinostat, shoots and roots exhibited a spontaneous curvature as well as an altered growth direction. Such an automorphogenesis was sometimes exaggerated when plants were subjected to the horizontal rotation, whereas the curvature was suppressed on the vertical rotation. These discrepancies in curvature between the 3-D clinostat and the conventional ones appear to be brought about by the centrifugal force produced. Thus, the 3-D clinostat was proven as a useful device to simulate microgravity.  相似文献   

12.
Stem growth of Prunus trees under simulated microgravity conditions was examined using a three-dimensional clinostat. The stems elongated with bending under such conditions. Stem elongation and leaf expansion were both promoted, whereas the formation of xylem in the secondary thickening growth was inhibited under the simulated microgravity condition. In secondary xylem, sedimentable amyloplasts were observed in the 1g control. The present results suggest that stem elongation and leaf expansion may be inhibited at 1g, while growth direction and secondary xylem formation depend on a gravity stimulus. A space experiment is expected to advance research on thickening growth in trees.  相似文献   

13.
The calculation of two-phase frictional pressure drop (TPFPD) is required by two-phase systems operating under microgravity and reduced gravity. There are a large number of correlations for the TPFPD in tubes under normal gravity. However, it is hard to find out a TPFPD correlation obtained from microgravity and/or reduced gravity conditions, and thus people have to use TPFPD correlations for normal gravity to calculate TPFPD under microgravity and reduced gravity. It is necessary to evaluate the feasibility of such practice. This paper offers a comprehensive review of the TPFPD correlations for normal gravity and an up-to-data survey of the TPFPD experimental study under microgravity and reduced gravity. There are 23 TPFPD correlations for normal gravity reviewed and 135 experimental data under microgravity obtained from the literature. These experimental data are used to evaluate the reviewed TPFPD correlations. It is found that the smallest mean absolute relative deviation (MARD) of the correlations is greater than 34%. Using TPFPD correlations for normal gravity to reduced gravity and microgravity may be acceptable for the first approximation, but correlations intended for microgravity and reduced gravity are needed and more experiments are desired to obtain more data with high accuracy.  相似文献   

14.
Numerous spaceflight experiments have noted changes in the roots that are consistent with hypoxia in the root zone. These observations include general ultrastructure analysis and biochemical measurements to direct measurements of stress specific enzymes. In experiments that have monitored alcohol dehydrogenase (ADH), the data shows this hypoxically responsive gene is induced and is associated with increased ADH activity in microgravity. These changes in ADH could be induced either by spaceflight hypoxia resulting from inhibition of gravity mediated O2 transport, or by a non-specific stress response due to inhibition of gravisensing. We tested these hypotheses in a series of two experiments. The objective of the first experiment was to determine if physical changes in gravity-mediated O2 transport can be directly measured, while the second series of experiments tested whether disruption of gravisensing can induce a non-specific ADH response. To directly measure O2 bioavailability as a function of gravity, we designed a sensor that mimics metabolic oxygen consumption in the rhizosphere. Because of these criteria, the sensor is sensitive to any changes in root O2 bioavailability that may occur in microgravity. In a KC-135 experiment, the sensor was implanted in a moist granular clay media and exposed to microgravity during parabolic flight. The resulting data indicated that root O2 bioavailability decreased in phase with gravity. In experiments that tested for non-specific induction of ADH, we compared the response of transgenic Arabidopsis plants (ADH promoted GUS marker gene) exposed to clinostat, control, and waterlogged conditions. The plants were grown on agar slats in a growth chamber before being exposed to the experimental treatments. The plants were stained for GUS activity localization, and subjected to biochemical tests for ADH, and GUS enzyme activity. These tests showed that the waterlogging treatment induced significant increases in GUS and ADH enzyme activities, while the control and clinostat treatments showed no response. This work demonstrates: (1) the inhibition of gravity-driven convective transport can reduce the O2 bioavailability to the root tip, and (2) the perturbation of gravisensing by clinostat rotation does not induce a nonspecific stress response involving ADH. Together these experiments support the microgravity convection inhibition model for explaining changes in root metabolism during spaceflight.  相似文献   

15.
In order to investigate the movement of a statolith complex along the longitudinal axis of root cap statocytes under different mass accelerations, a series of experiments with Lepidium sativum L. in an automatically operating centrifuge during the Bion-11 satellite flight and on a centrifuge-clinostat have been performed. During spaceflight, roots were grown for 24 h under root-tip-directed centrifugal 1-g acceleration, then exposed to microgravity for 6, 12 and 24 min and chemically fixed. During the first 6 min of microgravity, the statoliths moved towards the cell center with a mean velocity of 0.31 +/- 0.04 micrometers/min, which decreased to 0.12 +/- 0.01 micrometers/min within subsequent 12-24 min period. The mean relative position of the statolith complex in respect to the distal cell wall (% of total cell length) increased from 24.0 +/- 0.5% in 1 g-grown roots to 38.8 +/- 0.8% in roots exposed for 24 min to microgravity, but remained smaller than in roots grown continuously in microgravity (48.0 +/- 0.7%). The properties of the statolith movement away from the distal pole of the statocyte were studied in roots grown for 24 h vertically under 1 g and then placed for 6 min on a fast rotating clinostat (50 rpm) or 180 degrees inverted. After 2 min of both treatments, the mean relative position of the statoliths increased by about 10% versus its initial position. Later on, the proximal displacement of amyloplasts slowed down under simulated weightlessness, while it proceeded at a constant velocity under 1 g inversion. In roots grown on the clinostat and then exposed to 1 g in the longitudinal direction, amyloplast sedimentation away from the central region of statocyte was similar at the beginning of distal and proximal 6-min 1-g stimulation. However, at the end of this period statolith displacement was more pronounced in proximal direction as compared to distal. It is proposed that statolith position in the statocyte of a vertical root is controlled by the force of gravity, however, the intracellular forces, first of all those generated by the network of the cytoskeleton, are manifested when an usual orientation of the organ is changed or the statocytes are exposed to microgravity and clinorotation.  相似文献   

16.
Apical cells of moss protonemata represent a single-celled system that perceives and reacts to light (positive and negative phototropism) and to gravity (negative gravitropism). Phototropism completely overrides gravitropism when apical cells are laterally irradiated with relatively high red light intensities, but below a defined light intensity threshold gravitropism competes with the phototropic reaction. A 16 day-long exposure to microgravity conditions demonstrated that gravitropism is allowed when protonemata are laterally illuminated with light intensities below 140 nmol m-2s-1. Protonemata that were grown in darkness in microgravity expressed an endogenous tendency to grow in arcs so that the overall culture morphology resembled a clockwise spiral. However this phenomenon only was observed in cultures that had reached a critical age and/or size. Organelle positioning in dark-grown apical cells was significantly altered in microgravity. Gravisensing most likely involves the sedimentation of starch-filled amyloplasts in a well-defined area of the tip cell. Amyloplasts that at 1-g are sedimented were clustered at the apical part of the sedimentation zone in microgravity. Clustering observed in microgravity or during clino-rotation significantly differs from sedimentation-induced plastid aggregations after inversion of tip cells at 1-g.  相似文献   

17.
The assembly of the International Space Station (ISS) as a permanent experimental outpost has provided the opportunity for quality plant research in space. To take advantage of this orbital laboratory, engineers and scientists at the Wisconsin Center for Space Automation and Robotics (WCSAR), University of Wisconsin-Madison, developed a plant growth facility capable of supporting plant growth in the microgravity environment. Utilizing this Advanced Astroculture (ADVASC) plant growth facility, an experiment was conducted with the objective to grow Arabidopsis thaliana plants from seed-to-seed on the ISS. Dry Arabidopsis seeds were anchored in the root tray of the ADVASC growth chamber. These seeds were successfully germinated from May 10 until the end of June 2001. Arabidopsis plants grew and completed a full life cycle in microgravity. This experiment demonstrated that ADVASC is capable of providing environment conditions suitable for plant growth and development in microgravity. The normal progression through the life cycle, as well as the postflight morphometric analyses, demonstrate that Arabidopsis thaliana does not require the presence of gravity for growth and development.  相似文献   

18.
Cichlid fish larvae were reared from hatching to active free swimming under different gravity conditions: natural environment, increased acceleration in a centrifuge, simulated weightlessness in a clinostat and near weightlessness during space flight. Cytochrome oxidase activity was analyzed semiquantitatively on the ultrastructural level as a marker of regional neuronal activity in a primary, vestibular brainstem nucleus and in gravity receptive epithelia in the inner ear. Our results show, that gravity seems to be positively correlated with cytochrome oxidase activity in the magnocellular nucleus of developing fish brain. In the inner ear the energy metabolism is decreased under microgravity concerning utricle but not saccule. Hypergravity has no effect on cytochrome oxidase activity in sensory inner ear epithelia.  相似文献   

19.
Data are presented of a comparative analysis on rhizogenesis in the Arabidopsis thaliana tissue culture growing in a solid nutrient medium under stationary conditions, clinostatic conditions and microgravity. Tissue samples weighing 100 mg. were set in the Petri dishes and placed in a horizontal slow clinostat /2 revs/min/. After 14 days of growth they were analyzed. On clinostating the number of roots formed from the callus cells was approximately one half the control. The formed root cap manifested no essential differences, in comparison with the stationary control, in the number of layers and cell sizes in its layers. In callusogenic roots, formed from clinostated cells, differentiation including root cap cells, proceeds without noticeable deviations from the norm. At the same time, gravireceptor cells do not function under these conditions. This is clearly displayed at a structural level in the location of amyloplasts-statoliths throughout the cytoplasm. The callus cell cultures experienced microgravity for 8 days. The number of formed roots under the influence of this factor was 36% relative to the stationary control. Root cap formation was abnormal. Gravireceptor cells did not formed under microgravity.  相似文献   

20.
For the study of gravity's role in the processes of plant cell differentiation in-vitro, a model "seed-seedling-callus" has been used. Experiments were carried out on board the orbital stations Salyut-7 and Mir as well as on clinostat. They lasted from 18 to 72 days. It was determined that the exclusion of a one-sided action of gravity vector by means of clinostat and spaceflight conditions does not impede the formation and growth of callus tissue; however, at cell and subcellular levels structural and functional changes do take place. No significant changes were observed either on clinostat or in space concerning the accumulation of fresh biomass, while the percentage of dry material in space is lower than in control. Both in microgravity (MG) and in control, even after 72 days of growth, cells with a normally developed ultrastructure are present. In space, however, callus tissue more often contains cells in which the cross-section area of a cell, a nuclei and of mitochondria are smaller and the vacuole area--bigger than in controls. In microgravity a considerable decrease in the number of starch-containing cells and a reduction in the mean area of starch grains in amyloplasts is observed. In space the amount of soluble proteins in callus tissue is 1.5 times greater than in control. However, no differences were observed in fractions when separated by the SDS-PAGE method. In microgravity the changes in cell wall material components was noted. In the space-formed callus changes in the concentration of ions K, Na, Mg, Ca and P were observed. However, the direction of these changes depends on the age of callus. Discussed are the possible reasons for modification of morphological and metabolic parameters of callus cells when grown under changed gravity conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号