首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Concepts of a CELSS anticipate the use of photosynthetic organisms (higher plants and algae) for air revitalization. The rates of production and uptake of carbon dioxide and oxygen between the crew and the photosynthetic organisms are mismatched. An algal [correction of aglal] system used for gas exchange only will have the difficulty of an accumulation or depletion of these gases beyond physiologically tolerable limits (in a materially closed system the mismatch between assimilatory quotient (AQ) and respiratory quotient (RQ) will be balanced by the operation of the waste processor). We report the results of a study designed to test the feasibility of using environmental manipulations to maintain physiologically appropriate atmospheres for algae (Chlorella pyrenoidosa) and mice (Mus musculus strain DW/J) in a gas-closed system. Specifically, we consider the atmosphere behavior of this system with Chlorella grown on nitrate or urea and at different light intensities and optical densities. Manipulation of both the photosynthetic rate and AQ of the alga has been found to reduce the mismatch of gas requirements and allow operation of the system in a gas-stable manner. Operation of such a system in a CELSS may be useful for reduction of buffer sizes, as a backup system for higher plant air revitalization and to supply extra oxygen to the waste processor or during crew changes. In addition, mass balance for components of the system (mouse, algae and a waste processor) are presented.  相似文献   

2.
Edible biomass from four crops of wheat (Triticum aestivum L.), four crops of lettuce (Lactuca sativa L.), four crops of potato (Solanum tuberosum L.), and three crops of soybean (Glycine max (L.) Merr.) grown in NASA's CELSS Biomass Production Chamber were analyzed for proximate composition. All plants were grown using recirculating nutrient (hydroponic) film culture with pH and electrical conductivity automatically controlled. Temperature and humidity were controlled to near optimal levels for each species and atmospheric carbon dioxide partial pressures were maintained near 100 Pa during the light cycles. Soybean seed contained the highest percentage of protein and fat, potato tubers and wheat seed contained the highest levels of carbohydrate, and lettuce leaves contained the highest level of ash. Analyses showed values close to data published for field-grown plants with several exceptions: In comparison with field-grown plants, wheat seed had higher protein levels; soybean seed had higher ash and crude fiber levels; and potato tubers and lettuce leaves had higher protein and ash levels. The higher ash and protein levels may have been a result of the continuous supply of nutrients (e.g., potassium and nitrogen) to the plants by the recirculating hydroponic culture.  相似文献   

3.
Controlled ecological life support systems (CELSS) have been proposed to make long-duration manned space flights more cost-effective. Higher plants will presumably provide food and a breathable atmosphere for the crew. It has been suggested that imbalances between the CO2/O2 gas exchange ratios of the heterotrophic and autotrophic components of the system will inevitably lead to an unstable system, and the loss of O2 from the atmosphere. Ratio imbalances may be corrected by including a second autotroph with an appropriate CO2/O2 gas exchange ratio. Cyanothece sp. ATCC 51142 is a large unicellular N2-fixing cyanobacterium, exhibiting high growth rates under diverse physiological conditions. A rat-feeding study showed the biomass to be edible. Furthermore, it may have a CO2/O2 gas exchange ratio that theoretically can compensate for ratio imbalances. It is suggested that Cyanothece spp. could fulfill several roles in a CELSS: supplementing atmosphere recycling, generating fixed N from the air, providing a balanced protein supplement, and protecting a CELSS in case of catastrophic crop failure.  相似文献   

4.
Any attempt to create LSS for practical applications must take into account the possibility of castastrophic consequences if the problem of LSS reliability and stability is not solved. An integrated conception of CELSS studies development as a possible way to increase its reliability is considered. The BIOS-4 facility project is developed in the context of the conception. Three principles of highly effective experimental CELSS facility design are proposed. Some details of BIOS-4 design and its exploitation features are presented.  相似文献   

5.
The wet-oxidation catalysis of Au, Pd, Pt, Rh or Ru on a ceramic honeycomb carrier was traced in detail by 16 to 20 repetitive batch tests each. As a result, Pt or Pd on a honeycomb carrier was shown to catalyze complete nitrogen gasification as N2. Though the catalysts which realize both complete nitrogen gasification and complete oxidation could not be found, the Ru+Rh catalyst was found to be most promising. Ru honeycomb catalyzed both nitrification and nitrogen gasification.  相似文献   

6.
The CELSS Test Facility (CTF) is a device for measuring crop plant productivity in the micro-gravity environment of Space Station Freedom. It will allow us to address questions of crop productivity in space, versus that on the ground. The crop productivity factors that will be measured are rates of: 1) biomass production, 2) food production, 3) O2 and CO2 exchange, and 4) water transpiration. In addition, other productivity factors of specific crops will be determined, such as : 1) the ratio of edible to inedible biomass (harvest index), 2) leaf area exposed to and collecting light (leaf area index), 3) ratio of root mass to total biomass, and 4) photosynthetic efficiency (ratio of moles of CO2 fixed (or O2 produced), per mole of photons of specific energies used). Plant and crop morphology, at several levels, ranging from the community to the sub-cellular, will also be evaluated.  相似文献   

7.
The feasibility of using photosynthetic microalgae (cyanobacteria) as a subsystem component for the CELSS program, with particular emphasis on the manipulation of the biomass (protein/carbohydrate) has been addressed. Using factors which retard growth rates, but not photosynthetic electron flux, the partitioning of photosynthetically derived reductant may be dictated towards CO2 fixation (carbohydrate formation) and away from N2 fixation (protein formation). Cold shock treatment of fairly dense cultures markedly increases the glycogen content from 1% to 35% (dry weight), and presents a useful technique to change the protein/carbohydrate ratio of these organisms to a more nutritionally acceptable form.  相似文献   

8.
Plant-microbe interactions, such as those of the rhizosphere, may be ideally suited for recycling water in a Controlled Ecological Life Support System (CELSS). The primary contaminant of waste hygiene water will be surfactants or soaps. We identified changes in the microbial ecology in the rhizosphere of hydroponical1y grown lettuce during exposure to surfactant. Six week old lettuce plants were transferred into a chamber with a recirculating hydroponic system. Microbial density and population composition were determined for the nutrient solution prior to introduction of plants and then again with plants prior to surfactant addition. The surfactant Igepon was added to the recirculating nutrient solution to a final concentration of 1.0 g L-1. Bacteria density and species diversity of the solution were monitored over a 72-h period following introduction of Igepon. Nine distinct bacterial types were identified in the rhisosphere; three species accounted for 87% of the normal rhizosphere population. Microbial cell number increased in the presence of Igepon, however species diversity declined. At the point when Igepon was degraded from solution, diversity was reduced to only two species. Igepon was found to be degraded directly by only one species found in the rhizosphere. Since surfactants are degraded from the waste hygiene water within 24 h, the potential for using rhizosphere bacteria as a waste processor in a CELSS is promising.  相似文献   

9.
Studies for every level of CELSS: Waste processing, food production, photosynthesis system, and so on ..., imply an automatic system to control, command and quantify gases, water and chemical compounds. Used for many years in plant physiology studies, the C23A system monitors the analysis and quantifies gases (O2, CO2. N2, ...), physical parameters (temperature, humidity, ...) and chemical compounds (NH4+, N03-, ...) on numerous experiments. In the new version, the architecture of the computing system is near of the space requirements. We have chosen a structure with three independent levels: acquisition, monitoring and supervision. Moreover, we use multiplexed analysers: IRGA, mass spectrometer and cheminal analyser. The multiplexing increases the accuracy of the measurements and could facilitate the spatialization. Thus the whole structure anticipates the entire separation between automation in space and control-command on ground.  相似文献   

10.
以捷径法提高射线追踪效率   总被引:2,自引:0,他引:2  
为改善计算效率,提出了一种捷径法对射线追踪法进行改进. 射线追踪的计算时间主要耗费在求交判断上. 通过实际计算并记录一条射线管的轨迹,作为其后若干条射线管求交计算的优先参考,避免了再次进行漫无目的的遍历式求交,从而大量减少进行实际计算的射线管数量,节省射线求交运算时间. 经编程计算验证,该优化算法能够在保证相当精度的前提下,大幅度提高射线追踪法的计算效率,具备一定的实用价值.   相似文献   

11.
The term Closed Ecological System (CES) is in wide use. However there is no generally accepted measure of the closure of ecological systems. In order to obtain reproducibility of experiments with natural and man-made CES (with respect to degree of closure) some universal estimate needs to be developed. Understanding ecological systems as a network and closure as the degree of matter recycling allows the use of matrix graphs. Graphs are very natural forms for the presentation of the network of matter flows in ecosystems. An estimate equal to the sum of products of weights of oriented edges that constitute contour is suggested as a measure of the degree of closure in ecosystems. It is shown that this estimate can be uniformly applied to ecosystems of arbitrary size and configuration of flows.  相似文献   

12.
Mutations occur at a higher rate in space than under terrestrial conditions, primarily due to an increase in radiation levels. These mutations may effect the productivity of plants found in a controlled ecological life support system (CELSS). Computer simulations of plants with different ploidies, modes of reproduction, lethality thresholds, viability thresholds and susceptibilities to radiation induced mutations were performed under space normal and solar flare conditions. These simulations identified plant characteristics that would enable plants to retain high productivities over time in a CELSS.  相似文献   

13.
The major functions of soil relative to plant growth include retention and supply of water and minerals, provision of anchorage and support for the root, and provision of an otherwise adequate physical and chemical environment to ensure an extensive, functioning root system. The physical and chemical nature of the solid matrix constituting a soil interacts with the soil confinement configuration, the growing environment, and plant requirements to determine the soil's suitability for plant growth. A wide range of natural and manufactured terrestrial materials have proven adequate soils provided they are not chemically harmful to plants (or animals eating the plants), are suitably prepared for the specific use, and are used in a compatible confinement system. It is presumed this same rationale can be applied to planetary soils for growing plants within any controlled environment life support system (CELSS). The basic concepts of soil and soil-plant interactions are reviewed relative to using soils constituted from local planetary materials for growing plants.  相似文献   

14.
15.
Plant-derived nutrients were successfully recycled in a Controlled Ecological Life Support System (CELSS) using biological methods. The majority of the essential nutrients were recovered by microbiologically treating the plant biomass in an aerobic bioreactor. Liquid effluent containing the nutrients was then returned to the biomass production component via a recirculating hydroponic system. Potato (Solanum tuberosum L.) cv. Norland plants were grown on those nutrients in either a batch production mode (same age plants on a nutrient solution) or a staggered production mode (4 different ages of plants on a nutrient solution). The study continued over a period of 418 days, within NASA Breadboard Project's Biomass Production Chamber at the Kennedy Space Center. During this period, four consecutive batch cycles (104-day harvests) and 13 consecutive staggered cycles (26-day harvests) were completed using reclaimed minerals and compared to plants grown with standard nutrient solutions. All nutrient solutions were continually recirculated during the entire 418 day study. In general, tuber yields with reclaimed minerals were within 10% of control solutions. Contaminants, such as sodium and recalcitrant organics tended to increase over time in solutions containing reclaimed minerals, however tuber composition was comparable to tubers grown in the control solutions.  相似文献   

16.
As part of the NASA Advanced Life Support Flight Program, a Controlled Ecological Life Support System (CELSS) Test Facility Engineering Development Unit has been constructed and is undergoing initial operational testing at NASA Ames Research Center. The Engineering Development Unit (EDU) is a tightly closed, stringently controlled, ground-based testbed which provides a broad range of environmental conditions under which a variety of CELSS higher plant crops can be grown. Although the EDU was developed primarily to provide near-term engineering data and a realistic determination of the subsystem and system requirements necessary for the fabrication of a comparable flight unit, the EDU has also provided a means to evaluate plant crop productivity and physiology under controlled conditions. This paper describes the initial closed operational testing of the EDU, with emphasis on the hardware performance capabilities. Measured performance data during a 28-day closed operation period are compared with the specified functional requirements, and an example of inferring crop growth parameters from the test data is presented. Plans for future science and technology testing are also discussed.  相似文献   

17.
The photosynthesis and productivity of Lemna gibba were studied with a view to its use in Controlled Ecological Life Support Systems (CELSS). Photosynthesis of L. gibba floating on the nutrient solution could be driven by light coming from either above or below. Light from below was about 75% as effective as from above when the stand was sparse, but much less so with dense stands. High rates of photosynthesis (ca. 800 nanomoles CO2 g dry weight (DW)-1 s-1) were measured at 750 micromoles m-2 s-1 PPF and 1500 micromoles mol-1 CO2. This was attained at densities up to 660 g fresh weight (FW) m-2 with young cultures. After a few days growth under these conditions, and at higher densities, the rate of photosynthesis dropped to less than 25% of the initial value. This drop was only partly alleviated by thinning the stand or by introducing a short dark period at high temperature (26 degrees C). Despite the drop in the rate of photosynthesis, maximum yields were obtained in batch cultures grown under continuous light, constant temperature and high [CO2]. Plant protein content was less than reported for field grown Lemna. When the plants were harvested daily, maintaining a stand density of 600 g FW m-2, yields of 18 g DW m-2 d-1 were obtained. The total dry weight of L. gibba included 40% soluble material (sugars and amino acids), 15% protein, 5% starch, 5% ash and 35% cellulose and other polymers. We conclude that a CELSS system could be designed around stacked, alternate layers of transparent Lemna trays and lamps. This would allow for 7 tiers per meter height. Based on present data from single layers, the yield of such a system is calculated to be 135 g DW m-3 d-1 of a 100% edible, protein-rich food.  相似文献   

18.
The gas exchange portion of a phase-separated loop bioreactor was tested with respect to oxygen mass transfer and micromixing in accelerations of 0.01g, 1g, and 2g. A plot of the overall mass transfer coefficient versus gravity indicates the rate of oxygen transfer does not change as a function of acceleration. Also, it was determined that the micromixing did not exhibit significant changes in the various gravitational fields. These observations indicate the loop bioreactor should function independent of acceleration.  相似文献   

19.
Research of the effect of space environment on an ecosystem consisting of plants and animals is essential when they are to be positively used in space. Although there have been experiments on various organisms under space environment in the past, they mainly studied the effect of space environment on an individual organism or a single species. Microcosm is drawing attention as an experimental material of an ecosystem consisting of multiple species. The object in this research is to understand the nature of this network system called ecosystem. Thus, a mixed microorganism culturing system consisting of three types of microorganisms which form a minimum food chain system as a closed ecosystem (chlorella as the producer, bacteria as the decomposer, and rotifer as the consumer) was taken for the subject, on which to research the universal characteristics of ecosystems. From the results of experiments under the terrestrial environment, formation of colonies, which is an ecological structure, has been observed at its mature stage. The organisms form an optimal substance circulation system. Therefore, formation of colonies in simulation models is important. Many attempts have been made to create ecosystem models. For example, the Lotka-Volterra model forms a simultaneous equation with the differential equation expressing predator and prey relationship and many numerical calculations have been conducted on various ecosystems based on expanded L-V models. Conventionally, these top-down methods have been used. However, since this method only describes the average concentration of organisms that are distributed uniformly throughout the system and cannot express the spatial structure of the system, it was difficult to express ecosystem structures like colonies and density distributions. In actual ecosystems, there is heterogeneity in the number of individuals and in substance density, and this is thought to have great significance in ecosystems. Consequently, an individual-based model was used that applies rules to predator-prey relationship, suppression, production, self suppression, etc., of each species. It enabled the emergence of the overall system only by its local rules, and it was possible to reproduce colony generation. In addition, the transition and the ratio of populations for each species match well with experimental results.  相似文献   

20.
A typical ecosystem is composed of three compartments: photosynthetic producer (anabolizing processes), consumer and decomposer (catabolizing processes). It is still far too much complex, however, to form the basis on which establishing an engineered artificial ecosystem, dedicated to support life (of the consumer) in space. A simpler, two compartments, pilot model to start with has been selected. It is based on a symbiotic Chlorella (strain 241.80), which can be tuned, at low pH, to produce maltose. This feature prevents the accumulation of useless biomass, not readily edible by the consumer. Being excreted, maltose is easily recoverable, and constitutes a direct source of carbon suitable for many consumers. Since they will totally catabolize it back to CO2, the necessity for a decomposer compartment is avoided. The present status of the technological concept designed to support life of small consumers (animals, microorganisms) will be presented, taking into account the space compatibility of the technologies developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号