首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The asymmetrical growth of otoliths in fish is affected by hypergravity.   总被引:1,自引:0,他引:1  
Size and asymmetry (size difference between the left and the right side) of inner ear otoliths of larval cichlid fish were determined after a long-term stay at moderate hypergravity conditions (3g; centrifuge), in the course of which the animals completed their ontogenetic development from hatch to freely swimming. Both the normal morphogenetic development as well as the timely onset and gain of performance of the swimming behaviour was not impaired by the experimental conditions. However, both utricular and saccular otoliths (lapilli and sagittae, respectively) were significantly smaller after hyper-g exposure as compared to parallely raised 1g control specimens. The asymmetry of sagittae was significantly increased in the experimental animals, whereas the respective asymmetry con-cerning lapilli was pronouncedly decreased in comparison to the 1g controls. These findings suggest, that the growth and the development of bilateral asymmetry of otoliths is guided by the environmental gravity vector.  相似文献   

2.
Organisms use gravity for spatial orientation, and differentiation into species during evolution follows geological processes which are caused by gravity. On the other hand, the task of most organismic functions which have or may have a relation to gravity is to compensate gravity. Furthermore, today it is very obvious that organisms do not disintegrate under the conditions of weightlessness, at least for the currently tested durations. These previous statements indicate a large field of still unknown regulation and adaptation mechanisms. Experiments to simulate weightlessness on the fast clinostat and with hyper-g show a highly developed ability of the genetic chain and of differentiating cells in being autonomous against mechanical stresses caused by outer accelerations. Nevertheless, different strong and slight changes of different tested end points were found. The question remains if the cells react actively or only passively.  相似文献   

3.
Previous investigations revealed that the growth of fish inner ear otoliths (otolith size and calcium-incorporation) depends on the amplitude and the direction of gravity, suggesting the existence of a (negative) feedback mechanism. In search for the regulating unit, the vestibular nerve was transacted unilaterally in neonate swordtail fish (Xiphophorus helleri) which were subsequently incubated in the calcium-tracer alizarin-complexone. Calcium incorporation ceased on the transacted head sides, indicating that calcium uptake is neurally regulated. Grant numbers: 50 WB 9533, 50 WB 9997.  相似文献   

4.
In man, altered gravity may lead to a vestibular dysfunction causing space motion sickness. A hypothesis was developed, according to which asymmetric inner ear statoliths might be the morphological basis of space sickness. The animal model, fish, revealed further information: inner ear "stone" (otolith) growth is dependent on the amplitude and the direction of gravity, regulated by a negative feedback mechanism. The present study was focused on the question, where the regulation centre of adaptive otolith growth may be situated. Therefore, the vestibular nerve was unilaterally transected in neonate swordtail fish (Xiphophorus helleri). As growth marker, the calcium tracer alizarin-complexone was used. It was found that otolith growth had ceased on the operated head sides indicating that the brain is significantly involved in regulating otolith growth. About 2 weeks after nerve transection, otoliths had regained normal growth, probably due to nerve regeneration. Concerning fish, it has now to be tested, if this regeneration is affected by altered gravity, e.g. in a long-term experiment on the International Space Station. Regarding mammals, it has to be proved if asymmetric statoliths are the basis of kinetosis and whether or not the mammalian brain has an effect on statolith growth in the course of compensating altered gravity.  相似文献   

5.
Dynamic ocular torsion was investigated in a group of healthy subjects during the course of parabolic flight by means of our video-based eye movement recording method-video-oculography. This technique enables a non-invasive dynamic measurement of all three dimensions of eye movement in a harsh experimental environment such as parabolic flight. The test subjects were positioned so that the changing resultant gravito-inertial field in the aircraft was aligned with their interaural (y) axis, primarily stimulating the utricular organs. The analysis of the torsional component of eye movement during the change of gravity between 1.8-0 and 0-1.8 g demonstrated a static component--well known as the ocular counter roll--and a dynamic component, which leads to a slight overshoot in the torsional response. These static and dynamic component of ocular torsion correlate with previous neurophysiological findings.  相似文献   

6.
The eye perceives the length of vertical and horizontal lines with an inherent asymmetry. A vertical line having the same length as a horizontal one is usually perceived to be longer. In this experimental investigation we tested the hypothesis that gravity has a direct role in producing the observed perceptual asymmetry. To this end we performed experiments in weightlessness during long-orbital space flights onboard the MIR station. Subjects performed a psychophysical task in which the length of a visually-presented vertical line was adjusted to match the length of a horizontal reference. On Earth, almost all subjects produce errors in adjusting the length of the vertical line, consistently under-estimating the length of the horizontal reference. The asymmetry of perception of the line lengths persisted in weightlessness. From these results we conclude that the phenomena of asymmetry of perception of the lengths of vertical and horizontal lines is not dependent on gravity, but is instead defined by properties of the system of internal representation. Grant numbers: 99-04-48450.  相似文献   

7.
Anken RH  Rahmann H 《Acta Astronautica》1998,42(1-8):431-454
In vertebrates (including man), altered gravitational environments such as weightlessness can induce malfunctions of the inner ears, based on an irregular dislocation of the inner ear otoliths from the corresponding sensory epithelia. This dislocation leads to an illusionary tilt, since the otolithic inputs are not confirmed by the other sensory organs, which results in an intersensory conflict. Vertebrates in the orbit therefore face severe orientation problems. In humans, the intersensory conflict may additionally lead to a malaise, commonly referred to as space motion sickness (SMS). During the first days at weightlessness, the orientation problems (and SMS) disappear, since the brain develops a new compensatory interpretation of the available sensory data. The present review reports on the neurobiological responses--particularly of fish--observed at altered gravitational states, concerning behaviour and neuroplastic reactivities.  相似文献   

8.
In the 18.5-day flight of the Soviet biosatellite Cosmos-936 (3-22, August 1977) com-parative investigations of the physiological effects of prolonged weightlessness (20 rats) and artificial gravity of 1 g (10 rats) were carried out. Throughout the flight artificial gravity was generated by means of animal rotation in two centrifuges with a radius of 320mm. Postflight examination of animals and treatment of the flight data were performed by Soviet scientists in collaboration with the specialists from Bulgaria, Czechoslovakia, the German Democratic Republic, Hungary, Poland, Rumania, France and the U.S.A. During the flight the total motor activity of the weightless rats was higher and their body temperature was lower than those of the centrifuged animals. Postflight examination of the weightless rats showed a greater percentage of errors during maze an increase in water intake and a decrease in diuresis; a fall of the resistance of peripheral red cells; an increase in the conditionally pathogenic microflora in the mouth; a decrease of oxygen consumption, carbon dioxide production and energy expenditures; a drop in the static physical endurance; a decline in the capacity to keep balance on the rail; an increase in the latent period of the lifting reflex, etc. The centrifugal animals displayed lesser or no change of the above type. These findings together with the biochemical and morphological data give evidence that during and after flight adaptive processes in the centrifuged rats developed better.  相似文献   

9.
The heat transfer behavior of flow condensation inside horizontal tubes under zero-gravity and Earth-gravity conditions is modelled and analyzed. For Earth conditions for wetting fluids the annular flow region changes to a stratified flow pattern owing to gravity drainage of the condensate from the upper portion of the tube. The stratified condensate layer is considered inactive in the heat transfer process; its magnitude is determined along the tube length using the analytical results of Rufer and Kezios. Under zero-gravity conditions no such gravity drainage occurs and so the flow is considered to be annular along the complete length of the tube. The analytical approach of Bae was used to evaluate the heat transfer rates under zero gravity conditions. The results indicate a substantially poorer condensing performance under zero-gravity conditions. These results can be simply explained in terms of the smaller condensate film thickness over the upper portion of the tube periphery at any axial location under earth-gravity conditions because of gravity drainage of the condensate.  相似文献   

10.
The cytoskeleton is a complex network of fibers that is sensitive to environmental factors including microgravity and altered gravitational forces. Cellular functions such as transport of cell organelles depend on cytoskeletal integrity; regulation of cytoskeletal activity plays a role in cell maintenance, cell division, and apoptosis. Here we report cytoskeletal and mitochondria alterations in cultured human lymphocyte (Jurkat) cells after exposure to spaceflight and in insect cells of Drosophila melanogaster (Schneider S-1) after exposure to conditions created by clinostat rotation. Jurkat cells were flown on the space shuttle in Biorack cassettes while Schneider S-1 cells were exposed to altered gravity forces as produced by clinostat rotation. The effects of both treatments were similar in the different cell types. Fifty percent of cells displayed effects on the microtubule network in both cell lines. Under these experimental conditions mitochondria clustering and morphological alterations of mitochondrial cristae was observed to various degrees after 4 and 48 hours of culture. Jurkat cells underwent cell divisions during exposure to spaceflight but a large number of apoptotic cells was also observed. Similar results were obtained in Schneider S-1 cells cultured under clinostat rotation. Both cell lines displayed mitochondria abnormalities and mitochondria clustering toward one side of the cells which is interpreted to be the result of microtubule disruption and failure of mitochondria transport along microtubules. The number of mitochondria was increased in cells exposed to altered gravity while cristae morphology was severely affected indicating altered mitochondria function. These results show that spaceflight as well as altered gravity produced by clinostat rotation affects microtubule and mitochondria organization and results in increases in apoptosis. Grant numbers: NAG 10-0224, NAG2-985.  相似文献   

11.
This paper proposes a new goldfish model to predict pharmacodynamic/pharmacokinetic effects of drugs used to treat motion sickness administered in differing gravity loads. The assumption of these experiments is that the vestibular system is dominant in producing motion sickness and that the visual system is secondary or of small import in the production of motion sickness. Studies will evaluate the parameter of gravity and the contribution of vision to the role of the neurovestibular system in the initiation of motion sickness with and without pharmacologic agents. Promethazine will be studied first. A comparison of data obtained in different groups of goldfish will be done (normal vs. acutely and chronically bilaterally blinded vs. sham operated). Some fish will be bilaterally blinded 10 months prior to initiation of the experiment (designated the chronically bilaterally blinded group of goldfish) to evaluate the neuroplasticity of the nervous system and the associated return of neurovestibular function. Data will be obtained under differing gravity loads with and without a pharmacological agent for motion sickness. Experiments will differentiate pharmacological effects on vision vs. neurovestibular input to motion sickness. Comparison of data obtained in the normal fish and in acutely and chronically bilaterally blinded fish with those obtained in fish with intact and denervated otoliths will differentiate if the visual or neurovestibular system is dominant in response to altered gravity and/or drugs. Experiments will contribute to validation of the goldfish as a model for humans since plasticity of the central nervous system allows astronauts to adapt to the altered visual stimulus conditions of 0-g. Space motion sickness may occur until such an adaptation is achieved.  相似文献   

12.
李劲东 《宇航学报》2004,25(4):355-360
针对航天器密封舱内气体对流传热传质地面模拟试验问题,依据传热传质相似试验理论方法,进行了初步的理论分析,包括热缩比模型法和降压法,给出了它们相似试验的相似律及它们应用的约束条件,并从理论上定性分析了不同试验方法的优缺点。分析表明,在重力条件下,热缩比模型法在保持Reynolds数不变的前提下可明显抑制传热传质过程的温差和密度差对流动与传热传质的影响,而且抑制效果与缩比比例的三次方成正比;而降压法在保持Reynolds数不变的前提下同样可明显抑制自然对流的影响和密度差对流动与传热传质的影响,但对自然对流和传质过程的密度流的抑制效果有所不同。  相似文献   

13.
地面重力环境中进行航天器密封舱内空气通风换热试验时,由于自然对流的存在导致换热量和温度分布与空间微重力环境中的情况存在偏差。文章针对航天器密封舱,建立了舱内空气对流换热的数值模型,利用数值模拟软件对有无重力时典型工况下的对流换热进行了数值模拟及模拟结果的对比分析。分析表明重力对壁面换热量的影响较大,而对空气温度及分布的影响较小;且重力的影响随空气与壁面温差的增大而增大,随通风流量的增大而减小,舱间通风也会减小重力的影响。因此在重力环境中进行试验时需要对壁面换热量进行修正。  相似文献   

14.
Rosetta was selected in November 1993 for the ESA Cornerstone 3 mission, to be launched in 2003, dedicated to the exploration of the small bodies of the solar system (asteroids and comets). Following this selection, the Rosetta mission and its spacecraft have been completely reviewed: this paper presents the studies performed the proposed mission and the resulting spacecraft design.

Three mission opportunities have been identified in 2003–2004, allowing rendezvous with a comet. From a single Ariane 5 launch, the transfer to the comet orbit will be supported by planetary gravity assists (two from Earth, one from Venus or Mars); during the transfer sequence, two asteroid fly-bys will occur, allowing first mission science phases. The comet rendezvous will occur 8–9 years after launch; Rosetta will orbit around the comet and the main science mission phase will take place up to the comet perihelion (1–2 years duration).

The spacecraft design is driven (i) by the communication scenario with the Earth and its equipment, (ii) by the autonomy requirements for the long cruise phases which are not supported by the ground stations, (iii) by the solar cells solar array for the electrical power supply and (iv) by the navigation scenario and sensors for cruise, target approach and rendezvous phases. These requirements will be developed and the satellite design will be presented.  相似文献   


15.
The experiment was performed to ascertain whether man's ability to perform mechanical work would be altered as a result of exposure to the weightless environment. Skylab II crewmen were exercised on a bicycle ergometer at loads approximating 25%, 50%, and 75% of their maximum oxygen uptake while their physiological responses were monitored. The results of these tests indicate that the crewmen had no significant decrement in their response to exercise during their exposure to zero gravity. Immediately postflight, however, all crewmen demonstrated an inability to perform the programmed exercise with the same metabolic effectiveness as they did both preflight and inflight. The most significant changes were elevated heart rates for the same work load and oxygen consumption (decreased oxygen pulse), decreased stroke volume, and decreased cardiac output at the same oxygen consumption level. It is apparent that the changes occurred inflight, but did not manifest themselves until the crewmen attempted to readapt to the 1-G environment.  相似文献   

16.
Iwase S 《Acta Astronautica》2005,57(2-8):75-80
To test the effectiveness of centrifuge-induced artificial gravity with ergometric exercise, 12 healthy young men (20.7 +/- 1.9 yr) were exposed to simulated microgravity for 14 days of -6 degrees head-down bedrest. Half the subjects were randomly selected and loaded 1.2 G artificial gravity with 60 W (four out of six subjects) or 40 W (two out of six subjects) of ergometric workload on days 1, 2, 3, 5, 7, 9, 11, 12, 13, 14 (CM group). The rest of the subjects served as the control. Anti-G score, defined as the G-load x running time to the endpoint, was significantly elongated by the load of the centrifuge-ergometer. Plasma volume loss was suppressed (-5.0 +/- 2.4 vs. -16.4 +/- 1.9%), and fluid volume shift was prevented by the countermeasure load. Elevated heart rate and muscle sympathetic nerve activity after bedrest were counteracted, and exaggerated response to head-up tilt was also suppressed. Centrifuge-induced artificial gravity with exercise is effective in preventing cardiovascular deconditioning due to microgravity exposure, however, an effective and appropriate regimen (magnitude of G-load and exercise workload) should be determined in future studies.  相似文献   

17.
对转发卫星运动引入误差进行了研究。推导了卫星双向时间传递中的卫星运动误差模型,用两行轨道根数(TLE)对目前在轨的多颗地球同步轨道卫星(GEO)的运动进行计算。仿真结果显示:GEO卫星的受摄运动导致的卫星运动误差迭数百皮秒,卫星运动规律呈现周日特性,导致1d中不同时刻进行的卫星双向时间传递操作产生不同大小的卫星运动误差。  相似文献   

18.
Analyzing the results of space and ground-based experiments carried out in the Baikov Institute of Metallurgy and Materials Science to study the processes of the melting and crystallization of two-phase InSb–InBi alloys of an indium–antimony–bismuth (In–Sb– Bi) triple system, we have demonstrated the gravitational sensitivity of the InSb-based solution– melt. It manifests itself as a certain asymmetry of the boundary of the dissolution of the InSb ingot by the InSb–InBi melt and heterogeneity of the melt along this boundary depending on the magnitude and direction of the gravity force acceleration gin the range (1–10–3–10–5)g 0, where g 0is the acceleration of the gravity force on Earth. For the first time, it is established in the experiments under analysis that the homogeneity of melts of a complex composition with components of various densities can be reached only at magnitudes of quasistationary (residual) microaccelerations g< 10–6 g 0.  相似文献   

19.
Creation of artificial force of gravity (AFG) to counteract the negative consequences of microgravity in manned space missions of extended duration is one of the high-priority problems of space biology and medicine. However, there are a number of especial effects of AFG (namely, structural changes in muscles and bones, and some other system) which need implantation of electrodes and sensors and are possible only with animals. That is why it is of particular interest to make studies with monkeys whose reactions to changed gravity bear much resemblance with human. The purpose of the investigation was development of a protocol of periodic gravity loads as a counter-measure against the hypokinetic syndrome in Macaca mulatta. Two series of experiments were performed. In the series, animals were split into two groups of 6 species each who were motor restrained with the head end tilted downward at 5 degrees (HDT) for 28 days. Monkeys of group-2 were periodically subjected to centrifugation (HDT+G). During the first series of experiments rotation was conducted in the +Gz direction at g-loads from 1.2 to 1.6 units for 30-40 minutes 4-5 times a week. In the second series, g-load was equal to 1.2 units and the animals were rotated 30 min. 2-3 time a week. The criterion of Y-training protocol efficacy was a test +Gz run at 3 units for 30 s. during which functioning of the cardiovascular systems and its controls was evaluated. The test run was performed prior to and after HDT. Following HDT the animals of group HDT+G were more resistant to the test than their counterparts who had not been trained on the centrifuge. Data of the investigation imply that following HDT and HDT+G alike reduced the amount of total bodily fluids (by approximately 5%), the intracellular component (approximately 4%), and plasma volume (by 6-7%). Yet, there are radical differences between the groups in the levels of reduction in extracellular fluids (by 11% and 6.5%, respectively, P<0.05) and the interstitial component (by 11.5% and 6.5, respectively, P<0.05). Prophylactic centrifugation during HDT was also positive to the muscular blood flow in lower extremities.  相似文献   

20.
田百义  张熇  冯昊  张相宇  高博宇  周文艳 《宇航学报》2022,43(12):1587-1596
针对探测器在木星系统内多次借力的飞行路径和轨道优化设计问题,提出了一种基于三层优化思想的飞行路径规划方法,该方法可根据给定的任务约束和交会目标,自动搜索探测器在木星系统内的借力飞行序列,同时完成标称飞行轨道的优化设计。首先,文章在给定轨道动力学模型和木卫借力模型基础上,建立了面向木卫交会任务的两次借力飞行轨道优化设计模型和求解方法;然后,采用结合遗传算法、全局遍历和贪婪算法的三层优化设计思路,给出了一种环木飞行路径规划方法;最后,以木星四颗卫星的交会任务为例进行了仿真分析。仿真结果表明:针对木卫的交会任务,探测器速度增量需求随木卫借力次数的增多,呈现先显著减小后逐渐增大的现象;探测器采用多次木卫借力的策略,可显著降低探测器的速度增量需求;探测器速度增量达到最优之后,借力目标收敛于交会目标,且速度增量随借力次数的进一步增多而逐渐增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号