共查询到20条相似文献,搜索用时 0 毫秒
1.
V D Kern F D Sack 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1999,24(6):713-716
Moss protonemata are among the few cell types known that both sense and respond to gravity and light. Apical cells of Ceratodon protonemata grow by oriented tip growth which is negatively gravitropic in the dark or positively phototropic in unilateral red light. Phototropism is phytochrome-mediated. To determine whether any gravitropism persists during irradiation, cultures were turned at various angles with respect to gravity and illuminated so that the light and gravity vectors acted either in the same or in different directions. Red light for 24h (> or = l40nmol m-2 s-1) caused the protonemata to be oriented directly towards the light. Similarly, protonemata grew directly towards the light regardless of light position with respect to gravity indicating that all growth is oriented strictly by phototropism, not gravitropism. At light intensities < or = l00nmol m-2 s-1, no phototropism occurs and the mean protonemal tip angle remains above the horizontal, which is the criterion for negative gravitropism. But those protonemata are not as uniformly upright as they would be in the dark indicating that low intensity red light permits gravitropism but also modulates the response. Protonemata of the aphototropic mutant ptr1 that lacks a functional Pfr chromophore, exhibit gravitropism regardless of red light intensity. This indicates that red light acts via Pfr to modulate gravitropism at low intensities and to suppress gravitropism at intensities < or = 140nmol m-2 s-1. 相似文献
2.
R T Ripetskyj N A Kit C I Chaban 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1998,21(8-9):1135-1139
The superficial cells of dark-grown moss shoots give rise to negatively gravitropic protonemata, whatever the orientation of the shoot. Shoot orientation, however, does affect from which side of the shoot the protonemata form and the direction of their growth. Protonemata from horizontal shoots grow out at a near-right angle to their supporting axes and are initiated more or less evenly along the upper side of the stem. Protonemata arising from vertically-oriented shoots in either an upright or an inverted position grow straight at an acute angle to the stem axis. The difference in the growth direction of the protonemata seems to be conditioned by the different position of the growth zone of the protonemal outgrowths, and subsequently that of the apical protonemal cells, with respect to the gravity vector. Observations suggest that the shoot protonemata, in conditions of clinorotation, persist in their original growth direction. Results also indicate that, in darkness, gravity determines only the site of protonemata initiation, not the process of initiation itself. Light, by contrast, by acting through both phytochrome and high-energy reaction systems, triggers the initiation process and defines the location of protonemata. 相似文献
3.
O Y Khorkavtsiv O R Kardash 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,27(5):989-993
In darkness, protonemata of Pohlia nutans (Hedw.) grew negatively gravitropically (upwards). However, not all filaments became gravitropic immediately after transfer to darkness. Some of them (~20%) for several days grew in different directions with respect to gravity. The apical cells of those protonemata predominantly contained multiple chloroplasts. The intensity of chlorophyll fluorescence rapidly decreased in the apical cells of such protonemata while starch content increased in comparison with upright growing protonemata. Light, especially in the red and blue part of the spectrum, inhibited protonemal gravitropism. Red light induced stronger inhibitory effects than blue light. Red light of 1.0 to 1.5 micromoles m-2 s-1 intensity induced bud differentiation in apical cells on almost all side branches of main protonemal filaments. Bright fluorescence of F-actin bundles in the tip of apical protonematal cells and a delicately fluorescing network enclosing plastids basal to the tip in a sedimentation zone were visualized. Bright fluorescence of actin as local patches and fine prominent axially oriented bundles was observed in cells of gametophore buds. 相似文献
4.
R. T. Ripetskyj N. A. Kit Ch. I. Chaban 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1999,23(12):2005-2010
In dark-grown plantlets of the moss, Pottia intermedia, negatively gravitropic secondary protonemata differentiate from the superficial cells of leafy shoots. When transferred to the light, distal parts of the protonemata nearest to the apical cells begin to ramify and the apical cells of the side branches as well as of the main protonemal filaments often differentiate as buds. Dark-grown protonemata were oriented horizontally and illuminated from below with white light of different intensities. Only light with an intensity of 4.5 μmol·m−2·s−1 was sufficient to induce: (a) phototropism in the apical cells, (b) light-directed initiation of branch primordia, and (c) directed growth of side branches and bud differentiation. Apical cells illuminated with light of lower (0.03–0.37 μmol·m−2·s−1) intensity grew upwards (i.e., away from the light). It was shown that this upward growth was determined by the action of gravity. Although initiation of branch primordia was only slightly affected, their growth was strongly stimulated on the upper side of the protonemata. 相似文献
5.
O. T. Demkiv E. L. Kordyum O. R. Kardash O. Ya. Khorkavtsiv 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1999,23(12):1999-2004
The gravitropism of protonemata of Pohlia nutans is described and compared with that of other mosses. In darkness, protonemata showed negative gravitropism. Under uniform illumination they grew radially over the substrate surface, whereas unilateral illumination induced positive phototropic growth. Gravitropism was coupled with starch synthesis and amyloplast formation. Protonematal gravitropic growth is more variable than the strict negative gravitropism of Ceratodon chloronema. 相似文献
6.
O. T. Demkiv E. L. Kordyum O. R. Kardash O. Ya. Khorkavtsiv 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1999,23(12):1999
The gravitropism of protonemata of Pohlia nutans is described and compared with that of other mosses. In darkness, protonemata showed negative gravitropism. Under uniform illumination they grew radially over the substrate surface, whereas unilateral illumination induced positive phototropic growth. Gravitropism was coupled with starch synthesis and amyloplast formation. Protonematal gravitropic growth is more variable than the strict negative gravitropism of Ceratodon chloronema. 相似文献
7.
V D Kern F D Sack 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,27(5):941-949
Apical cells of moss protonemata represent a single-celled system that perceives and reacts to light (positive and negative phototropism) and to gravity (negative gravitropism). Phototropism completely overrides gravitropism when apical cells are laterally irradiated with relatively high red light intensities, but below a defined light intensity threshold gravitropism competes with the phototropic reaction. A 16 day-long exposure to microgravity conditions demonstrated that gravitropism is allowed when protonemata are laterally illuminated with light intensities below 140 nmol m-2s-1. Protonemata that were grown in darkness in microgravity expressed an endogenous tendency to grow in arcs so that the overall culture morphology resembled a clockwise spiral. However this phenomenon only was observed in cultures that had reached a critical age and/or size. Organelle positioning in dark-grown apical cells was significantly altered in microgravity. Gravisensing most likely involves the sedimentation of starch-filled amyloplasts in a well-defined area of the tip cell. Amyloplasts that at 1-g are sedimented were clustered at the apical part of the sedimentation zone in microgravity. Clustering observed in microgravity or during clino-rotation significantly differs from sedimentation-induced plastid aggregations after inversion of tip cells at 1-g. 相似文献
8.
M Braun 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,27(5):1031-1039
Gravitropically tip-growing cell types are attractive unicellular model systems for investigating the mechanisms and the regulation of gravitropism. Especially useful for studying the mechanisms of positive and negative gravitropic tip-growth are characean rhizoids and protonemata. They originate from the same cell type, show the same overall cell shape, cytoplasmic zonation, arrangement of actin and microtubule cytoskeleton, use statoliths for gravisensing, but show opposite gravitropism. In both cell types, actin microfilaments are complexly organized in the apical dome,where a dense spherical actin array is colocalized with spectrin-like epitopes and a unique endoplasmic reticulum aggregate, the structural center of the Spitzenk?rper. The opposite gravitropic responses seem to be based on differences in the actin-organized anchorage of the Spitzenk?rper and the actin-mediated transport of statoliths. In negatively gravitropic (upward bending) protonemata, the statoliths-induced drastic upward shift of the cell tip is preceded by a relocalization of dihydropyridine-binding calcium channels and of the apical calcium gradient to the upper flank (bending by bulging). Such relocalizations have not been observed in positively gravitropically responding (downward growing) rhizoids in which statoliths sedimentation is followed by differential flank growth (bending by bowing). This paper reviews the current knowledge and hypotheses on the mechanisms of the opposite gravitropic responses in characean rhizoids and protonemata. 相似文献
9.
D Hodick B Buchen A Sievers 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1998,21(8-9):1183-1189
The rhizoids of the green alga Chara are tip-growing cells with a precise positive gravitropism. In rhizoids growing downwards the statoliths never sediment upon the cell wall at the very tip but keep a minimal distance of approximately 10 micrometers from the cell vertex. It has been argued that this position is attained by a force acting upon the statoliths in the basal direction and that this force is generated by an interaction between actin microfilaments and myosin on the statolith membrane. This hypothesis received experimental support from (1) effects of the actin-attacking drug cytochalasin, (2) experiments under microgravity conditions, and (3) clinostat experiments. Using video-microscopy it is now shown that this basipetal force also acts on statoliths during sedimentation. As a result, many statoliths in Chara rhizoids do not simply fall along the plumb line while sedimenting during gravistimulation, but move basipetally. This statolith movement is compared to the ones occurring in the unicellular Chara protonemata during gravistimulation. Dark-grown protonemata morphologically closely resemble the rhizoids but respond negatively gravitropic. In contrast to the rhizoids a gravistimulation of the protonemata induces a transport of statoliths towards the tip. This transport is mainly along the cell axis and not parallel to the gravity vector. It is stressed that the sedimentation of statoliths in Chara rhizoids and protonemata as well as in gravity sensing cells in mosses and higher plants is accompanied by statolith movements based on interactions with the cytoskeleton. In tip-growing cells these movements direct the statoliths to a definite region of the cell where they can sediment and elicit a gravitropic curvature. In the statocytes of higher plants the interactions of the statoliths with the cytoskeleton probably do not serve primarily to move the statoliths but to transduce mechanical stresses from the sedimenting statoliths to the plasma membrane. 相似文献
10.
Ch. I. Chaban R. T. Ripetskyj E. L. Kordyum N. A. Kit 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1999,23(12):2011-2016
Under gravistimulation, dark-grown protonemata of Pottia intermedia revealed negative gravitropism with a growth rate of approximately 28 μm·h−1 at room temperature (20 °C). In 7 days, the protonema formed a bundle of vertically oriented filaments. At an elevated temperature (30 °C), bundles of vertically growing filaments were also formed. However, both filament growth rate and amplitude of the gravicurvature were reduced. Red light (RL) irradiation induced a positive phototropism of most apical protonemal cells at 20 °C. In a following period of darkness, approximately two-thirds of such cells began to grow upward again, recovering their negative gravitropism. RL irradiation at the elevated temperature caused a partial increase in the number of protonemal cells with negative phototropism, but the protonemata did not exhibit negative gravitropism after transfer to darkness. The negative gravitropic reaction was renewed only when protonemata were placed at 20 °C. A dramatic decrease in starch amount in protonemal apical cells, which are sensitive to both gravity and light, occurred at the higher temperature. Such a decrease may be one of the reasons for the inhibition of the protonemal gravireaction at the higher temperature. The observation has a bearing on the starch-statolith theory. 相似文献
11.
C I Chaban E L Kordyum O T Demkiv 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1999,24(6):717-721
Moss protonemata exhibit negative gravitropism and the amyloplasts of the apical cell seem to play a key role in protonemal gravisensitivity. However, the mechanisms of this process are still poorly understood. Previously, we have shown that Ceratodon protonemata grown on agar-medium demonstrated greater gravicurvature than protonemata grown on medium with 11 mM glucose. In this study, we have examined whether gibberellic acid (GA), which promotes alpha-amylase expression, influences graviresponse of C. purpureus protonemata (strains WT-4 and WT-U) and how this event interacts with exogenous soluble sugars. After gravistimulation the WT-4 strain curved about twice as fast as the WT-U strain. However, responses of both strains to added substances were similar. High concentration of glucose (0.11 M) caused a decrease in protonema curvature, while the same concentration of sucrose did not significantly change the angles of curvature compared with controls. GA at 0.1 mM and higher concentrations inhibited gravitropism, and caused some apical cells to swell. The possible involvement of the carbohydrates in gravitropism is discussed. 相似文献
12.
O T Demkiv E L Kordyum O R Khorkavtsiv YaDKardash 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1998,21(8-9):1191-1195
Moss protonemal growth direction is controlled by at least three factors, photo-, gravi- and autotropism. It is possible to experimentally separate these factors and to control selectively their morphological appearance. In darkness protonema grow negatively gravitropically, and unilateral illumination initiated positive phototropism. Red light suppressed auto- and gravitropism, blue light suppressed only gravitropism. Green light allowed both gravi- and autotropism. The effect of light on gravitropism might involve changes in starch synthesis. 相似文献
13.
D K Kondepudi P B Storm 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1992,12(1):7-14
Bifurcation is a phenomenon in which a physical system is forced to make a choice between one of the several possible states to which it can evolve. In this process the system can become extremely sensitive to very small influences--smaller than the size of the fluctuations--that favor one of the states. A general theory of this sensitivity and a simple model for gravity detection is presented. The difference between systems in thermodynamic equilibrium and those that are far from equilibrium is also discussed. 相似文献
14.
P W Barlow 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1998,21(8-9):1097-1102
Living organisms, especially plants, show some plasticity in their overall development, usually as a response to the external environment. Plasticity may apply not only to the external form of organisms but also to their physiology as well as to the detailed structure of their genome. A further example of plasticity may be developmental instability, where anomalous development seems to appear spontaneously, probably as a result of some transient environmental perturbation. Whether the absence of gravity would have sufficient impact on any living process to evoke a specific course of plastic development is unknown, though it is possible that in certain circumstances special forms, or 'agravimorphs', could be produced. Through such new forms, it should be possible to identify processes required for development in which 1 x g gravity is a necessary participant. 相似文献
15.
A Schatz R Reitstetter W Briegleb A Linke-Hommes 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1992,12(1):51-53
Theoretical investigations of the membrane-solution interface predict different effects of gravity on vertically and horizontally oriented planar membranes. Single channel events of gramicidin incorporated into phosphatidylserine planar bilayer membranes were measured in 0.1 M KCl solution, pH 7, at room temperature. The potential difference across the membrane was set to +/- 70 mV. The mean channel current was observed to be about 20% higher in horizontally oriented membranes compared to vertical membranes. This is in good agreement with the theoretical considerations and demonstrates that gravity does affect membrane processes by interaction with the membrane-solution interface which is a ubiquitous structure in biological systems. 相似文献
16.
A Schatz R Reitstetter A Linke-Hommes W Briegleb K Slenzka H Rahmann 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(8):35-43
Application of the Gouy-Chapman-Debye-Hückel (GCDH) theory to a model membrane in contact with electrolytes of various concentrations and composition predict density variations within an interfacial layer. Assuming that on cellular dimensions hydrodynamics can be applied (the objections are briefly discussed) two types of gravity effects can be defined, 1. convection along the surface of vertically oriented membranes and 2. surface potential variations by layer deformations at horizontally oriented membranes. Both effects should affect transport across the layer to the membrane surface and across the membrane. According to the theoretical predictions first experiments with gramicidin channels incorporated into artificial phosphatidylserine bilayer membranes show a significant difference in single channel currents in vertical and horizontal membranes. The complexity of biological membrane functions requires investigation of isolated membrane surface reactions and transport systems to study the gravisensitivity for each process separately. 相似文献
17.
M D Ross 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1983,3(9):179-190
Two new findings, that crystals located in the inner ear gravity receptors of mammals have the internal organization requisite for the piezoelectric property, and that sensory hair cells of these same receptors possess contractile-appearing striated organelles, have prompted the author to model mammalian gravity receptors in the ear on the principles of piezoelectricity and bioenergetics. This model is presented and a brief discussion of its implications for the possible effects of weightlessness follows. 相似文献
18.
G W Nace 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1983,3(9):159-168
Normally bilateralization takes place in the presence of the Earth's gravity which produces torque, shear, tension and compression acting upon the naked aggregates of cytoplasm in the zygote which is only stabilized by a weak cytoskeleton. In an initial examination of the effects of these quantities on development, an expression is derived to describe the tendency of torque to rotate the egg and reorganize its constituents. This expression yields the net torque resulting from buoyancy and gravity acting upon a dumbbell shaped cell with heavy and light masses at either end and "floating" in a medium. Using crude values for the variables, torques of 2.5 x l0(-13) to 8.5 x 10(-1) dyne-cm are found to act upon cells ranging from 6.4 micrometers to 31 mm (chicken egg). By way of camparison six microtubules can exert a torque of 5 x 10(-9) dyne-cm. (1) Gravity imparts torque to cells; (2) torque is reduced to zero as gravity approaches zero; and (3) torque is sensitive to cell size and particulate distribution. Cells must expend energy to maintain positional homeostasis against gravity. Although not previously recognized, Skylab 3 results support this hypothesis: tissue cultures used 58% more glucose on Earth than in space. The implications for developmental biology, physiology, genetics, and evolution are considered. At the cellular and tissue level the concept of "gravity receptors" may be unnecessary. 相似文献
19.
O V Lobachevska O T Demkiv R T Ripetskyj 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1998,21(8-9):1141-1144
During the growth and development of the sporophytic capsules of some moss species, negative gravitropism is changed for a positive one. Horizontal clinostat rotation induced unregulated growth of the sporophytes and their twisting; some of sporophytes remained straight, however. It has been established that the change of the gravitropic reaction is related to capsule formation and to the redistribution of amyloplast cells of the sporophyte graviperception zone. 相似文献
20.
A Schatz A Linke-Hommes 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1989,9(11):61-64
The theory of concentration and potential variations at interfaces is applied to the membrane-solution interface to calculate density variations. The theory is modified to take care of the finite ion volumes in electrolytes. Our model is a phospholipid membrane with a surface charge density of -4.824*10(-6)(As/cm2) in contact with solutions of KCl, NaCl, CaCl2, and mixtures. Maximal density variations of about 4*10(-2)(G/cm3) were found in surface layers between the membrane and the solutions. The extension of the layers is in the range of 1 to 6 nm. 相似文献