共查询到20条相似文献,搜索用时 15 毫秒
1.
D E Schwartz R L Mancinelli M R White 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1995,15(3):193-197
An important question for exobiology is, did life evolve on Mars? To answer this question, experiments must be conducted on the martian surface. Given current mission constraints on mass, power, and volume, these experiments can only be performed using proposed analytical techniques such as: electron microscopy, X-ray fluorescence, X-ray diffraction, alpha-proton backscatter, gamma-ray spectrometry, differential thermal analysis, differential scanning calorimetry, pyrolysis gas chromatography, mass spectrometry, and specific element detectors. Using prepared test samples consisting of 1% organic matter (bovine serum albumin) in palagonite and a mixture of palagonite, clays, iron oxides, and evaporites, it was determined that a combination of X-ray diffraction and differential thermal analysis coupled with gas chromatography provides the best insight into the chemistry, mineralogy, and geological history of the samples. 相似文献
2.
3.
R H Haynes C P McKay 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1992,12(4):133-140
Environmental conditions on Mars are extremely hostile, and would be destructive to any organisms which might arrive there unprotected to-day. However, it is a biocompatible planet. Its unalterable astrophysical parameters would allow the maintenance of a much thicker, warmer carbon dioxide atmosphere than that which currently exists. Though very cold (averaging about -60 degrees C), highly oxidizing and desiccated, Mars may possess substantial quantities of the materials needed to support life--in particular, water and carbon dioxide. A general scenario for implanting life on Mars would include three main phases: (1) robotic and human exploration to determine whether sufficiently large and accessible volatile inventories are available; (2) planetary engineering designed to warm the planet, release liquid water and produce a thick carbon dioxide atmosphere; and (3) if no indigenous Martian organisms emerge as liquid water becomes available, a program of biological engineering designed to construct and implant pioneering microbial communities able to proliferate in the newly clement, though still anaerobic, Martian environment. The process of establishing an ecosystem, or biosphere, on a lifeless planet is best termed 'ecopoiesis.' This new word, derived from Greek, means 'the making of an abode for life.' It is by no means clear whether ecopoiesis on Mars is scientifically possible or technologically achievable. Thus we urge that it be one of the objectives of space research during the next century to assess the feasibility of ecopoiesis on Mars. 相似文献
4.
W L Davis C P McKay S F Hynes 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1999,24(4):489-496
The detection of organics on Mars remains an important scientific objective. Advances in instrumentation and laboratory techniques provide new insight into the lower level detection limit of complex organics in closely packed media. Preliminary results demonstrate that algae present in a palagonite medium do exhibit a spectral reflectance feature in the visible range for dry mass weight ratios of algae to palagonite greater than 6%--which corresponds to 30 mg algae in a 470 mg (just optically thick (< 3 mm) layer) palagonite matrix. This signature most probably represents chlorophyll a, a light harvesting pigment with an emission peak at 678 nm. 相似文献
5.
K Kobayashi T Sato S Kajishima T Kaneko Y Ishikawa T Saito 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1997,19(7):1067-1076
It is suggested that primitive Mars had somehow similar environments as primitive Earth. If life was born on the primitive earth using organic compounds which were produced from the early Earth environment, the same types of organic compounds were also formed on primitive Mars. Such organic compounds might have been preserved on Mars still now. We are studying possible organic formation on primitive and present Mars. A gaseous mixture of CO2, CO, N2 and H2O with various mixing ratios were irradiated with high energy protons (major components of cosmic rays). Hydrogen cyanide and formaldehyde were detected among volatile products, and yellow-brown-colored water-soluble non-volatile substances were produced, which gave amino acids after acid-hydrolysis. Major part of "amino acid precursors" were not simple molecules like aminonitriles, but complex compounds which eluted earlier than free amino acids in cation-exchange HPLC. These organic compounds should be major targets in the future Mars mission. Strategy for the detection of the complex organics on Mars will be discussed. 相似文献
6.
M V Ivanov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1995,15(3):215-221
We suggest a new interpretation of the data on so-called SNC meteorites and delta 13C values of the calcium carbonate minerals and organic matter discovered in them. The delta 13C value of calcite (up to 15 ppt) is accounted for by the microbial reaction CO2 + H2 ---> CH4 + H2O. Methane-forming bacteria also synthesize organic carbon (in the form of biomass) from CO2, and this process is accompanied by 12C fractionation. Therefore, the organic carbon of SNC meteorites is enriched with 12C (delta 13C as low as -35 ppt). The environmental conditions under which the calcite of SNC meteorites was formed were favorable for the activity of methanogens. 相似文献
7.
H P Klein D L DeVincenzi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1995,15(3):151-156
Of all the other planets in the solar system, Mars remains the most promising for further elucidating concepts about chemical evolution and the origin of life. Strategies were developed to pursue three exobiological objectives for Mars exploration: determining the abundance and distribution of the biogenic elements and organic compounds, detecting evidence of an ancient biota on Mars, and determining whether indigenous organisms exist anywhere on the planet. The three strategies are quite similar and, in fact, share the same sequence of phases. In the first phase, each requires global reconnaissance and remote sensing by orbiters to select sites of interest for detailed in situ analyses. In the second phase, lander missions are conducted to characterize the chemical and physical properties of the selected sites. The third phase involves conducting "critical" experiments at sites whose properties make them particularly attractive for exobiology. These critical experiments would include, for example, identification of organics, detection of fossils, and detection of extant life. The fourth phase is the detailed analysis of samples returned from these sites in Earth-based laboratories to confirm and extend previous discoveries. Finally, in the fifth phase, human exploration is needed to establish the geological settings for the earlier findings or to discover and explore sites that are not accessible to robotic spacecraft. 相似文献
8.
R L Mancinelli A Banin 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1995,15(3):171-176
The primary physical factors important to life's evolution on a planet include its temperature, pressure and radiation regimes. Temperature and pressure regulate the presence and duration of liquid water on the surface of Mars. The prolonged presence of liquid water is essential for the evolution and sustained presence of life on a planet. It has been postulated that Mars has always been a cold dry planet; it has also been postulated that early mars possessed a dense atmosphere of CO2 (> or = 1 bar) and sufficient water to cut large channels across its surface. The degree to which either of these postulates is true correlates with the suitability of Mars for life's evolution. Although radiation can destroy living systems, the high fluxes of UV radiation on the martian surface do not necessarily stop the origin and early evolution of life. The probability for life to have arisen and evolved to a significant degree on Mars, based on the postulated ranges of early martian physical factors, is almost solely related to the probability of liquid water existing on the planet for at least hundreds of millions to billions of years. 相似文献
9.
Development of a micro-balance system for dust and water vapour detection in the Mars atmosphere 总被引:1,自引:0,他引:1
R. Battaglia E. Palomba P. Palumbo L. Colangeli V. Della Corte 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,33(12):2258-2262
Quartz crystal piezoelectric sensors are suitable for deposition analyses that need very high sensitivity. Due to the wide working ranges and high performances, micro-balances can measure the mass settling in average Mars conditions during a period of months before saturation is reached. This ensures a proper use for short and long term water and dust deposition monitoring. Micro-balances have been studied, calibrated and used for the GIADA (grain impact analyser and dust accumulator) experiment for the ESA-Rosetta space mission. Experience on micro-balance performance study by dust deposition has been acquired and water vapour deposition studies are in progress in a Martian atmosphere simulation chamber. Preliminary results show that micro-balances are capable to detect up to partial pressure values corresponding to parts per billion of the typical Martian atmosphere. 相似文献
10.
R J White J B Bassingthwaighte J B Charles M J Kushmerick D J Newman 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,31(1):7-16
Today, the tools are in our hands to enable us to travel away from our home planet and become citizens of the solar system. Even now, we are seriously beginning to develop the robust infrastructure that will make the 21st century the Century of Space Travel. But this bold step must be taken with due concern for the health, safety and wellbeing of future space explorers. Our long experience with space biomedical research convinces us that, if we are to deal effectively with the medical and biomedical issues of exploration, then dramatic and bold steps are also necessary in this field. We can no longer treat the human body as if it were composed of muscles, bones, heart and brain acting independently. Instead, we must lead the effort to develop a fully integrated view of the body, with all parts connected and fully interacting in a realistic way. This paper will present the status of current (2000) plans by the National Space Biomedical Research Institute to initiate research in this area of integrative physiology and medicine. Specifically, three example projects are discussed as potential stepping stones towards the ultimate goal of producing a digital human. These projects relate to developing a functional model of the human musculoskeletal system and the heart. 相似文献
11.
M Schidlowski 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1992,12(4):101-110
Organic and inorganic carbon in terrestrial near-surface environments are characterized by a marked difference in their 13C/12C ratios which can be traced back in the Earth's sedimentary record over almost 4 billion years. There is no doubt that the bias in favour of 12C displayed by biogenic matter derives, for the most part, from the isotope-selecting properties of the carbon-fixing enzyme (ribulose-1,5-bisphosphate carboxylase) that is operative in the principal photosynthetic pathway and promotes most of the carbon transfer from the non-living to the living realm. Postulating a universality of biological principles in analogy to the proven universality of the laws of physics and chemistry, we may expect enzymatic reactions in exobiological systems to be beset with B similar kinetic fractionation effects. Hence, the retrieval from the oldest Martian sediments of isotopic fractionations between reduced and oxidized (carbonate) carbon may substantially constrain current conjectures on the possible existence of former life on Mars. 相似文献
12.
A. Galeev V. Moroz V. Linkin R. Kremnev G. Rogovsky K. Pichkhadze B. Martynov O. Papkov A. Eremenko E. Galimov Y. Surkov C. Elachi R. Bourke J. McNamee 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1996,17(12):15-20
Program MARS GLOB provides step-by-step deployment of an international network of Mars surface stations by association the MESUR NETWORK (USA), INTERMARS-NET (ESA) programs with the network of small stations and penetrators now under developing in Russia jointly with international cooperation in frameworks of the MARS-96 Project. It is offering also delivery on Mars surface two penetrators and Mars Rover. Now penetrators and Rover are developing by Russia with participation of other countries in frameworks of the MARS-98 (or MARS TOUR) Project. 相似文献
13.
L J Rothschild 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1995,15(3):223-228
If life were present on Mars to day, it would face potentially lethal environmental conditions such as a lack of water, frigid temperatures, ultraviolet radiation, and soil oxidants. In addition, the Viking missions did not detect near-surface organic carbon available for assimilation. Autotrophic organisms that lived under a protective layer of sand or gravel would be able to circumvent the ultraviolet radiation and lack of fixed carbon. Two terrestrial photosynthetic near-surface microbial communities have been identified, one in the inter- and supertidal of Laguna Ojo de Liebre (Baja California Sur, Mexico) and one in the acidic gravel near several small geysers in Yellowstone National Park (Wyoming, U.S.A.). Both communities have been studied with respect to their ability to fix carbon under different conditions, including elevated levels of inorganic carbon. Although these sand communities have not been exposed to the entire suite of Martian environmental conditions simultaneously, such communities can provide a useful model ecosystem for a potential extant Martian biota. 相似文献
14.
C Ponnamperuma R Navarro-González Y Honda 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1995,15(3):177-184
Although there is no direct evidence yet for the existence of life on Mars, it is reasonable to conclude that the emergence of life on Earth, which appears to have been controlled by universal laws of physics and chemistry, may have been repeated elsewhere in the universe. The dual approach of synthesis and analysis in our experimental studies has provided ample evidence in support of this hypothesis. 相似文献
15.
J Koike T Oshima K Kobayashi Y Kawasaki 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1995,15(3):211-214
The ability of living organisms to survive extraterrestrial conditions has implications for the origins of life in the solar system. We have therefore studied the survival of viruses, bacteria, yeast, and fungi under simulated Martian conditions. The environment on Mars was simulated by low temperature, proton irradiation, ultraviolet irradiation, and simulated Martian atmosphere (CO2 95.46%, N2 2.7%, water vapor 0.03%) in a special cryostat. After exposure to these conditions, tobacco mosaic virus and spores of Bacillus, Aspergillus, Clostridium, and some species of coccus showed significant survival. 相似文献
16.
G Weckwerth M Schidlowski 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1995,15(3):185-191
In contrast to the search for extant organisms, the quest for fossil remains of life on Mars need not be guided by the presence of water and organic compounds on the present surface. An appropriate tracer might be the element phosphorus which is a common constituent of living systems. Utilizing terrestrial analogues, it should preferentially exist in the form of sedimentary calcium phosphate (phosphorites), which would have readily resisted changing conditions on Mars. Moreover, higher ratios of P/Th in phosphorites in comparison to calcium phosphates from magmatic rocks give us the possibility to distinguish them from inorganically formed phosphorus deposits at or close to the Martian surface. Identification of anomalous phosphorus enrichments by remote sensing or in situ analysis could be promising approaches for selecting areas preferentially composed of rocks with remains of extinct life. 相似文献
17.
Detection of regolith buried water stream channels on Mars with the help of synthetic aperture radar
O.N. Rzhiga 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
A major theme in the study of Mars is the search for evidence that water was present in the past or is present today, either at or below the surface. Biological life is connected to water. Hence much research is focused on the detection of water stream channels, which in the past flowed on Mars. In these areas, the petrified remains of the former life on Mars may be found. These channels may be under the regolith layer; however, the radio wave penetrating ability allows for the detection of these channels under the regolith. 相似文献
18.
Estimation and assessment of Mars contamination. 总被引:1,自引:0,他引:1
A Debus 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,35(9):1648-1653
Since the beginning of the exploration of Mars, more than fourty years ago, thirty-six missions have been launched, including fifty-nine different space systems such as fly-by spacecraft, orbiters, cruise modules, landing or penetrating systems. Taking into account failures at launch, about three missions out of four have been successfully sent toward the Red Planet. The fact today is that Mars orbital environment includes orbiters and perhaps debris, and that its atmosphere and its surface include terrestrial compounds and dormant microorganisms. Coming from the UN Outer Space Treaty [United Nations Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, including the Moon and Other Celestial Bodies (the "Outer Space Treaty") referenced 610 UNTS 205 - resolution 2222(XXI) of December 1966] and according to the COSPAR planetary protection policy recommendations [COSPAR Planetary Protection Policy (20 October 2002), accepted by the Council and Bureau, as moved for adoption by SC F and PPP, prepared by the COSPAR/IAU Workshop on Planetary Protection, 4/02 with updates 10/0, 2002], Mars environment has to be preserved so as not to jeopardize the scientific investigations, and the level of terrestrial material brought on and around Mars theoretically has to comply with this policy. It is useful to evaluate what and how many materials, compounds and microorganisms are on Mars, to list what is in orbit and to identify where all these items are. Considering assumptions about materials, spores and gas location and dispersion on Mars, average contamination levels can be estimated. It is clear now that as long as missions are sent to other extraterrestrial bodies, it is not possible to keep them perfectly clean. Mars is one of the most concerned body, and the large number of missions achieved, on-going and planned now raise the question about its possible contamination, not necessarily from a biological point of view, but with respect to all types of contamination. Answering this question, will help to assess the potential effects of such contamination on scientific results and will address concerns relative to any ethical considerations about the contamination of other planets. 相似文献
19.
M Nelson J P Allen W F Dempster 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1992,12(5):211-217
As part of the ground-based preparation for creating long-term life systems needed for space habitation and settlement, Space Biospheres Ventures (SBV) is undertaking the Biosphere 2 project near Oracle, Arizona. Biosphere 2, currently under construction, is scheduled to commence its operations in 1991 with a two-year closure period with a crew of eight people. Biosphere 2 is a facility which will be essentialy materially-closed to exchange with the outside environment. It is open to information and energy flow. Biosphere 2 is designed to achieve a complex life-support system by the integration of seven areas or "biomes"--rainforest, savannah, desert, marsh, ocean, intensive agriculture and human habitat. Unique bioregenerative technologies, such as soil bed reactors for air purification, aquatic waste processing systems, real-time analytic systems and complex computer monitoring and control systems are being developed for the Biosphere 2 project. Its operation should afford valuable insight into the functioning of complex life systems necessary for long-term habitation in space. It will serve as an experimental ground-based prototype and testbed for the stable, permanent life systems needed for human exploration of Mars. 相似文献
20.
E Chassefière J-L Bertaux J-J Berthelier M Cabane V Ciarletti G Durry F Forget M Hamelin F Leblanc M Menvielle M Gerasimov O Korablev S Linkin G Managadze A Jambon G Manhès Ph Lognonné P Agrinier P Cartigny D Giardini T Pike W Kofman A Herique P Coll A Person F Costard Ph Sarda Ph Paillou M Chaussidon B Marty F Robert S Maurice M Blanc C d'Uston J-Ch Sabroux J-F Pineau P Rochette 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,34(8):1702-1709
In view to prepare Mars human exploration, it is necessary to promote and lead, at the international level, a highly interdisciplinary program, involving specialists of geochemistry, geophysics, atmospheric science, space weather, and biology. The goal of this program will be to elaborate concepts of individual instruments, then of integrated instrumental packages, able to collect exhaustive data sets of environmental parameters from future landers and rovers of Mars, and to favour the conditions of their implementation. Such a program is one of the most urgent need for preparing human exploration, in order to develop mitigation strategies aimed at ensuring the safety of human explorers, and minimizing risk for surface operations. A few main areas of investigation may be listed: particle and radiation environment, chemical composition of atmosphere, meteorology, chemical composition of dust, surface and subsurface material, water in the subsurface, physical properties of the soil, search for an hypothesized microbial activity, characterization of radio-electric properties of the Martian ionosphere. Scientists at the origin of the present paper, already involved at a high degree of responsibility in several Mars missions, and actively preparing in situ instrumentation for future landed platforms (Netlander--now cancelled, MSL-09), express their readiness to participate in both ESA/AURORA and NASA programs of Mars human exploration. They think that the formation of a Mars Environment working group at ESA, in the course of the AURORA definition phase, could act positively in favour of the program, by increasing its scientific cross-section and making it still more focused on human exploration. 相似文献