共查询到16条相似文献,搜索用时 62 毫秒
1.
2.
本文依据在低速风洞所取得的测力、油流观察及旋涡测量结果,研究了前掠翼鸭式布局的鸭翼位置对气动性能的影响机理。研究表明,鸭翼位置对气动性能的影响是极为显著的。前掠翼鸭式布局大迎角性能的提高取决于鸭、主翼前缘涡的相对位置及其相互控制,也就是它们间的相互干扰。文中根据前掠及后掠鸭翼与主翼组合的实验结果,提出了采用鸭式布局时鸭、主翼应具有的平面形状及它们的相对位置。文中还对双前掠翼布局提出了一些看法。 相似文献
3.
前掠翼布局中鸭翼气动影响的数值模拟 总被引:1,自引:1,他引:1
采用三维Navier-Stokes方程和剪切应力输运(SST)湍流模型,就鸭翼不同位置和形状对前掠翼鸭式布局气动性能的影响进行数值模拟,并针对风洞试验方法难于分部件研究机翼、鸭翼以及机身各自气动特性的缺点,对布局升阻特性按部件分解研究并分析流动机理。研究结果表明:前掠翼鸭式布局气动性能(特别是在大迎角情况下)与鸭翼位置及其形状紧密相关,高位近距后掠式鸭翼可以与机翼产生更为有利的相互干扰,与无鸭翼布局相比最大升力系数提高约28.3%,最大升阻比提高约15.4%,大大地提高了前掠翼布局的纵向气动性能。该研究结果可为先进前掠翼布局飞机的预研和发展提供一定的理论参考。 相似文献
4.
5.
通过风洞试验研究了前掠翼融合体无尾气动布局(FBB布局)的流动控制技术。研究结果表明,FBB布局设计使前掠翼的前缘涡与融合于机体的大后掠侧缘的侧缘涡的发展过程达到了较为理想的匹配,有效控制布局的流动是FBB布局获得突出纵向气动性能的主要物理根源。针对大迎角状态提出的两段可动式侧板流动控制技术,通过可动段与固定段前缘之间形成收缩型缝道,将机身下表面的高能气流引入上表面增强了机体侧缘涡,加强了对机翼根部和后体流动的控制、减缓机翼根部分离、控制机头分离区,既可提供俯仰控制力矩,又不损失升力,改善了失速特性,有利于FBB布局的纵向配平和俯仰控制。FBB布局的流动控制设计思想和两段可动式侧板控制技术为无尾布局飞机设计提供了一条崭新的思路。 相似文献
6.
鸭翼-前掠翼气动布局纵向气动特性实验研究 总被引:6,自引:0,他引:6
前掠翼布局由于其潜在的优势,在未来战斗机的研制中将占有日益重要的地位.本实验通过可变前掠翼和鸭式前翼布局的风洞测力实验,重点分析比较了平板机翼在不同掠角下的纵向气动性能以及鸭翼的影响.实验结果表明,前掠翼在大迎角时能有效提高模型的升力系数,小迎角时其升阻比也略优于后掠翼.前掠翼布局能有效推迟失速,具有良好的失速特性;前掠角较大时,升力系数曲线在失速迎角附近有一个升力系数的"平台",该布局具有"缓失速"特性.距离主机翼较远的鸭式前翼(模型M2)在主机翼前掠和后掠情况下,均可改善整体布局的失速特性,增大失速迎角,增强前掠翼布局缓失速的特点.近距耦合鸭翼(模型M3)显著提高了模型在大迎角下的升力系数.另外,主翼前掠和鸭式前翼布局飞行器具有较好的机动性. 相似文献
7.
前掠翼根部流动分离的控制 总被引:1,自引:1,他引:1
在风洞和水洞中研究了机翼根部修形、活动边条、固定边条、边条襟翼和链接边条在控制前掠翼根部流动分离方面的作用。分析了上述措施对机翼流动的干扰机理及其对气动性能的影响。研究结果表明,各种措施对控制前掠翼根部流动分离均有明显效果,可提高大迎角升阻特性,改善纵向力矩特性和配平能力。固定边条和边条襟翼还可改善中小迎角的升阻性能,链接边条和边条襟翼则可使失速性能提高。加鸭翼后上述气动收益更加明显。 相似文献
8.
'W'型无尾布局流动机理研究 总被引:1,自引:0,他引:1
基于NS方程数值模拟方法,研究了‘W’型无尾布局的流动机理。与参照前掠翼布局相比,‘W’布局优越的气动性能来源于其流动形态的变化:小迎角时,翼身融合升力体设计,使机体表面流动更为通畅,升力增加,机体部件干扰减小,部分补偿了因机身加宽,浸润面积增大带来的摩擦阻力,使总阻力没有明显增加。α≥6°,‘W’布局具有新的流动结构,机翼上表面流动由侧缘涡和前缘涡及其诱导的二次涡所控制,侧缘涡与前缘涡之间产生有利干扰,增强了对机翼表面流动的控制能力,不仅带来涡升力,而且有效控制了前掠翼根部流动分离,是其具有优越纵向气动性能的物理原因。‘W’布局新的流动结构为其横侧气动性能改善奠定了基础,为进一步完善布局设计提供了理论依据。 相似文献
9.
一种新的变前掠翼无人机气动布局 总被引:4,自引:1,他引:3
研究了一种新的变前掠翼无人机气动布局概念,在低、亚、跨和超声速状态下可通过改变机翼的前掠角来获取最佳的气动性能。根据设计指标和翼身融合技术初步设计了其几何外形,并采用三维Navier-Stokes方程数值模拟和对比分析了5种不同任务构型的气动特性。结果表明:①在Ma=0.6巡航时,平直翼加挂副油箱构型最大升阻比为14.55,而三角翼构型仅为8.29;②在Ma=0.4机动时,45°前掠翼构型失速迎角达到38°且具有最大的升力系数2.455,较平直翼构型提高了4.9%;③在Ma=1.5高速突防时,三角翼零升阻力系数最小,比平直翼加挂副油箱构型减小了14.4%,最大升阻比提高了34.6%;④所有计算状态下俯仰力矩特性均良好。研究结果验证了变前掠翼无人机气动布局新概念的合理性和先进性,可为高性能无人机的设计提供参考。 相似文献
10.
11.
鸭翼双三角翼流态及气动力特性研究 总被引:2,自引:1,他引:2
本文给出了鸭翼对双三角翼气动特性及涡的发展和破裂过程的影响,进而分析了鸭翼位置、平面形状对全机气动特性影响的机理,并提出了合理的鸭翼双三角翼布局形式。 相似文献
12.
联接翼布局低速纵向气动特性研究 总被引:5,自引:0,他引:5
本文基于低速风洞纵向测力以及涡格法的理论计算结果,初步研究了联接翼布局的低速 向气动特性,并与相应的机翼、尾翼相分离的正常布局的试验结果作了比较。结果表明,联接翼布局具有许多优点,如较大的升力线斜率C、较大的最大升力系数Cymax、较大的纵向稳定度、相当小的诱导阻力Cxi和较高的巡航或阻比K,以及具有直接升力和直接侧力控制的可能性。文章还表明在联接翼前部配置鸭翼对进一步提高和改善其纵向气动性能的可 相似文献
13.
14.
利用ARGON和MGAERO计算了三翼面布局飞机气动特性和机翼载荷,给出了有前翼、无前翼布局全机气动特性和机翼环量分布。研究分析了前翼对全机气动特性、机翼分布载荷的影响规律,得到了一些重要的结论,可用于飞机型号设计。 相似文献
15.
对细长体平板三角翼和加上两个不同高度背鳍后的组合体在低速风洞进行了六分量天平测力实验,三角翼后掠角82.5°,背鳍当地高度与模型当地半展长比值分别为0.3和0.6,实验迎角范围12°~32°,包括1.66×10.6和2.33×10.6两个雷诺数。实验结果表明:0°侧滑角下,在翼面上发生旋涡破裂前,单独细长平板三角翼的横向力及横向力矩在实验迎角范围内始终为零;加上两个不同高度的低背鳍后,在一定的迎角下,三角翼的横向力及横向力矩开始不为零,流场定常;在更大的迎角下,流场变得非定常。实验结果初步验证了前人关于细长锥体分离涡的稳定性理论,并给出了旋涡失稳后,随着迎角的增大,流场进一步发展的状态。 相似文献
16.
油流试验表明,迎角α=8°时,小边条机翼的外翼上就出现分离区。通过加翼刀或锯齿或缩短翼展都可以抑制分离区的发展。试验表明,采用加双翼刀和缩短翼展的组合方案,可以使升力曲线随迎角的变化直到α=16°都是线性的。 相似文献