首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
In order to suppress vibration in flexible manipulators, a new type of manipulator mechanism with controllable local degrees of freedom is proposed. This mechanism consists of a main chain and some branch links. The main chain is of a flexible open-chain configuration with an end-effector installed at its tip, and the rigid branch links are able to perform active movements. It is proved by kinematics and dynamic analysis that, the branch links bear no direct kinematic relation to the main chain, but their independent motions can strongly affect the dynamic behavior and performance of the flexible manipulator. Then comes a new idea of suppressing vibration, in which independent motions of the branch links are used to suppress the undesired vibration of the flexible main chain through dynamic coupling. On this basis, an optimal method for reducing vibration of flexible manipulators is proposed. Finally, the effectiveness of this method is verified by numerical simulations.  相似文献   

2.
A finite time attitude controller is designed for a flexible spacecraft based on a novel output redefinition method, in this paper. To make the flexible appendages vibration suppression effective, the appendage tip-point is selected as the output. First, a novel output redefinition method is proposed to overcome the non-minimum phase property of the dynamic model. The proposed method not only makes the system model minimum phase but also improves the attitude control system performance. Conseque...  相似文献   

3.
In this research, a GPA(Gas Path Analysis) diagnostic system enhanced with GPA Index is described for gas path sensor and component fault diagnosis.A method of measurement correction is used in order that the measurement data obtained at un-standard ambient and operating conditions can be used for diagnostic analysis.The developed diagnostic system has been implemented into a Cranfield University gas turbine performance and diagnostic analysis software PYTHIA for gas turbine performance degradation analysis.The developed method and software have been applied to a model aero gas turbine engine to test the effectiveness of the system.The analysis shows that the developed diagnostic system can diagnose degraded sensor and components effectively using performance deviation measured at un-standard ambient and operational conditions.Theoretically, the idea of the diagnostic approach can be applied to different gas turbine engines.   相似文献   

4.
When performing operation tasks, the interaction between a flexible manipulator and a grasped object usually results in an impact. In this paper, a new way is suggested to alleviate impact vibration of a flexible manipulator via its structural characteristic when capturing a moving object. Controllable local degrees of freedom are introduced to the topological structure of the flexible manipulator, and used as an effective tool to combat impact vibration through dynamic coupling. A corresponding method is put forward to reduce impact vibration responses of the flexible manip- ulator via the controllable local degrees of freedom. By planning motion of the controllable local degrees of freedom, appropriate control force can be constructed to increase the modal damping and stiffness and eliminate the exciting force simultaneously, thereby reducing impact vibration responses of the flexible manipulator. Simulations are conducted and results are shown to prove the presented method.  相似文献   

5.
During environment testing, the time histories of some dynamic environments follow non-Gaussian distribution. It is always assumed that the random vibration simulated follows Gaussian distribution, because the traditional digital random vibration control system can only supply the random vibration excitation signal of Gaussian. Yo simulate the real environment of product, a method is developed in this paper that can generate non-Gaussian random signal with specified power spectrum density (PSD), skewness and kurtosis by shot noise. In this way, non-Gaussian random vibration can be produced on traditional electrodynamic shaker. It solves the problems of spectral valley and energy shortage in low frequency on omni-axis shaker. At last, the wavelet is used to analyze the non-Gaussian signal  相似文献   

6.
Impulse components in vibration signals are important fault features of complex machines. Sparse coding(SC) algorithm has been introduced as an impulse feature extraction method, but it could not guarantee a satisfactory performance in processing vibration signals with heavy background noises. In this paper, a method based on fusion sparse coding(FSC) and online dictionary learning is proposed to extract impulses efficiently. Firstly, fusion scheme of different sparse coding algorithms is presented to ensure higher reconstruction accuracy. Then, an improved online dictionary learning method using FSC scheme is established to obtain redundant dictionary and it can capture specific features of training samples and reconstruct the sparse approximation of vibration signals. Simulation shows that this method has a good performance in solving sparse coefficients and training redundant dictionary compared with other methods. Lastly, the proposed method is further applied to processing aircraft engine rotor vibration signals. Compared with other feature extraction approaches, our method can extract impulse features accurately and efficiently from heavy noisy vibration signal, which has significant supports for machinery fault detection and diagnosis.  相似文献   

7.
In this study, a multi-input/multi-output(MIMO) time-delay feedback controller is designed to actively suppress the flutter instability of a multiple-actuated-wing(MAW) wind tunnel model in the low subsonic flow regime. The unsteady aerodynamic forces of the MAW model are computed based on the doublet-lattice method(DLM). As the first attempt, the conventional linear quadratic-Gaussian(LQG) controller is designed to actively suppress the flutter of the MAW model. However, because of the time delay in the control loop, the wind tunnel tests illustrate that the LQG-controlled MAW model has no guaranteed stability margins. To compensate the time delay, hence, a time-delay filter, approximated via the first-order Pade approximation, is added to the LQG controller. Based on the time-delay feedback controller, a new digital control system is constructed by using a fixed-point and embedded digital signal processor(DSP) of high performance. Then, a number of wind tunnel tests are implemented based on the digital control system.The experimental results show that the present time-delay feedback controller can expand the flutter boundary of the MAW model and suppress the flutter instability of the open-loop aeroelastic system effectively.  相似文献   

8.
Research on Feature Extraction of Remnant Particles of Aerospace Relays   总被引:3,自引:0,他引:3  
The existence of remnant particles, which significantly reduce the reliability of relays, is a serious problem for aerospace relays. The traditional method for detecting remnant particles—particle impact noise detection (PIND)—can be used merely to detect the existence of the particle; it is not able to provide any information about the particles’ material. However, information on the material of the particles is very helpful for analyzing the causes of remnants. By analyzing the output acoustic signals from a PIND tester, this paper proposes three feature extraction methods: unit energy average pulse durative time, shape parameter of signal power spectral density (PSD), and pulse linear predictive coding coefficient sequence. These methods allow identified remnants to be classified into four categories based on their material. Furthermore, we prove the validity of this new method by processing PIND signals from actual tests.  相似文献   

9.
Real-time and accurate fault detection is essential to enhance the aircraft navigation system’s reliability and safety. The existent detection methods based on analytical model draws back at simultaneously detecting gradual and sudden faults. On account of this reason, we propose an online detection solution based on non-analytical model. In this article, the navigation system fault detection model is established based on belief rule base (BRB), where the system measuring residual and its changing rate are used as the inputs of BRB model and the fault detection function as the output. To overcome the drawbacks of current parameter optimization algorithms for BRB and achieve online update, a parameter recursive estimation algorithm is presented for online BRB detection model based on expectation maximization (EM) algorithm. Furthermore, the proposed method is verified by navigation experiment. Experimental results show that the proposed method is able to effectively realize online parameter evaluation in navigation system fault detection model. The output of the detection model can track the fault state very well, and the faults can be diagnosed in real time and accurately. In addition, the detection ability, especially in the probability of false detection, is superior to offline optimization method, and thus the system reliability has great improvement.  相似文献   

10.
A hybrid Euler/full potential/Lagrangian wake method,based on single-blade simulation,for predicting unsteady aerodynamic flow around helicopter rotors in hover and forward flight has been developed.In this method,an Euler solver is used to model the near wake evolution and transonic flow phenomena in the vicinity of the blade,and a full potential equation(FPE) is used to model the isentropic potential flow region far away from the rotor,while the wake effects of other blades and the far wake are incorporated into the flow solution as an induced inflow distribution using a Lagrangian based wake analysis.To further reduce the execution time,the computational fluid dynamics(CFD) solution and rotor wake analysis(including induced velocity up-date) are conducted parallelly,and a load balancing strategy is employed to account for the information exchange between two solvers.By the developed method,several hover and forward-flight cases on Caradonna-Tung and Helishape 7A rotors are per-formed.Good agreements of the loadings on blade surface with available measured data demonstrate the validation of the method.Also,the CPU time required for different computation runs is compared in the paper,and the results show that the pre-sent hybrid method is superior to conventional CFD method in time cost,and will be more efficient with the number of blades increasing.  相似文献   

11.
陕晋军  刘暾 《航空学报》2002,23(1):62-65
 针对当代带大型挠性附件的空间飞行器,提出了分力合成主动振动抑制方法,并且分析了方法的鲁棒性。该方法可以保证挠性飞行器在实现指定的刚体运动的同时,抑制掉对系统影响较大的挠性振动模态,对频率不确定性的鲁棒性使得该方法易于工程实践。对于使用常幅值力矩喷气执行机构的航天器,设计了应用分力合成方法的时间—燃料最优机动控制律,数值仿真结果验证了方法的有效性。  相似文献   

12.
柔性天线面对漂浮基星载天线扰动分析及抑制   总被引:3,自引:0,他引:3  
游斌弟  赵志刚  赵阳 《航空学报》2010,31(12):2348-2356
 为了研究柔性天线面弹性变形对漂浮基星载天线的扰动,采用固定界面模态综合法和Lagrange方法,通过轴末端与天线面交界面的协调关系,推导了大范围运动的星载天线刚柔耦合动力学模型,其所建立的动力学模型计算效率高并具有足够的精度。分析了柔性天线面弹性变形对星载天线的扰动,利用PD+振动力反馈控制抑制系统振动,并基于Lyapunov方法证明了控制系统的渐近稳定性。仿真结果表明:天线工作过程激起了柔性天线面弹性振动,进而引起星载天线的抖动,严重影响了星载天线的指向精度;利用其控制策略能快速抑制系统振动。结论对天线指向精度的分析与控制具有重要的理论价值及工程实际意义。  相似文献   

13.
柔性冗余度机器人振动的分析与控制   总被引:3,自引:1,他引:3  
边宇枢 《航空学报》1999,20(4):90-93
应用最优控制理论,对柔性冗余度机器人振动控制问题的原理与策略进行了研究。把主动控制思想应用于机器人振动控制中,提出了控制柔性冗余度机器人振动的一种方法。这种方法通过规划机器人的自运动加快系统振动能量的消耗以实现主动振动控制。此外,通过对满足抑振要求的自运动的选取进行分析,指出柔性冗余度机器人具有二次优化的能力,这对于提高机器人的工作性能是十分重要的。最后通过数值仿真验证了该方法的有效性。  相似文献   

14.
利用二次优化实现柔性冗余度机器人关节力矩最小化研究   总被引:4,自引:0,他引:4  
边宇枢  高志慧  贠超 《航空学报》2005,26(1):111-115
对基于振动抑制的柔性冗余度机器人关节力矩的最小化进行了研究。通过分析影响柔性机器人弹性动力响应的因素,得出了在结构参数不变的情况下可以通过适当调整关节运动参数来提高机器人动态性能的结论。在此基础上,通过对柔性冗余度机器人的关节运动进行研究,提出了通过自运动的适当选取从而抑制机器人柔性振动的方法。通过对满足抑振要求的自运动的选取进行分析,指出柔性冗余度机器人在实现振动抑制的基础上还具有二次优化的能力,并且利用这种二次优化的能力得出了基于振动抑制的最小化关节力矩的方法。数值仿真验证了该方法的有效性。  相似文献   

15.
柔性冗余度机器人运动灵活性的研究   总被引:1,自引:0,他引:1  
边宇枢 《航空学报》2001,22(6):570-572
 对改善柔性冗余度机器人的运动灵活性问题进行了研究。首先分析了机器人的关节速度与其运动灵活性之间的关系;然后利用柔性冗余度机器人的二次优化能力,进一步研究了改善柔性冗余度机器人运动灵活性的问题,通过泰勒级数展开的办法把振动的抑制从加速度级等效转化到速度级,从而可以在速度级上同时实现振动的抑制和灵活性的改善,并给出了在抑振的同时改善机器人运动灵活性的方法。最后通过数值仿真验证了该方法的有效性。  相似文献   

16.
用于直升机振动控制的主动调谐式吸振器研究   总被引:3,自引:0,他引:3  
陈勇 《中国航空学报》2003,16(4):203-211
振动问题是直升机设计中的难题,会导致机体结构疲劳、舒适性降低和高噪声等问题。通常的单桨叶控制方案由于受压电驱动器机电性能的限制而难以实现。智能弹簧是一种采用单桨叶控制原理的主动调谐式吸振器,它通过压电驱动器自适应控制桨叶根部的结构阻抗,达到振动控制目的。建立了智能弹簧的简化模型,对其谐波响应控制特性进行研究;采用频率分析和数字信号合成技术产生参考信号,在DSP平台上设计自适应陷波算法对智能弹簧驱动器组件进行控制;模拟和风洞实验结果均表明智能弹簧能够在较宽频率范围内对桨叶的谐波响应进行有效控制,验证了通过主动阻抗控制实现直升机桨叶振动控制的可行性。  相似文献   

17.
挠性航天器大角度机动的滑模变结构控制   总被引:1,自引:0,他引:1  
周连文  周军  李卫华 《飞行力学》2004,22(1):71-73,78
考虑刚性主体上带有挠性梁的航天器,在建立挠性系统动力学模型的基础上,采用指数趋近率的滑模变结构控制策略进行大角度机动控制,并通过最优控制理论设计弹性稳态器抑制由于刚体运动而激发的弹性振动,数字仿真表明,提出的控制策略在实现旋转机动的同时,有效地抑制了弹性振动。  相似文献   

18.
对用于抑制转子系统启机过临界转速时过大振动的动力吸振器进行参数优化设计,以达到最优抑振目的。利用有限元方法建立动力吸振器-转子耦合系统的动力学方程,求得耦合系统的半数值半解析的响应表达式。设计优化策略利用响应解与限边界的坐标轮换法相结合,寻找动力吸振器的最佳设计变量;将所得最优参数的动力吸振器与常规优化设计方法设计的动力吸振器的抑振性能进行对比,并分析动力吸振器对参数最优偏离的敏感性。结果表明:该参数优化方法优化的动力吸振器能降低1阶共振幅值达45.4%,说明了该方法的有效性;该方法比两种有效的常规优化方法优化的动力吸振器的抑振效果分别高11.2%、9%,可见其优化效果的优异性;与阻尼最优偏离相比,该参数优化方法优化的动力吸振器的抑振性能对刚度最优偏离具有更高的敏感性。   相似文献   

19.
某型涡扇发动机高压转静子碰摩故障研究   总被引:1,自引:0,他引:1       下载免费PDF全文
基于某型双转子涡扇发动机高压转、静子在工作中发生的碰摩现象,通过碰摩消除前后的整机振动响应对比,总结了高压转、静子碰摩的典型振动特征,结合碰摩特点及相关振动理论研究,建立了高压压气机转、静子碰摩模型,应用龙格库塔(Rung-Kutta)法求解模型特定转速下碰摩位置振动响应的频谱图。计算与试验结果表明:双转子结构发动机发生转、静子碰摩时靠近碰摩位置的机匣振动响应会出现次谐波、高次谐波和组合谐波成分,且随碰摩接触面积的增加而增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号