首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The original design by J. A. Simpson of the neutron monitor enabled continuous monitoring of the primary cosmic-ray flux by ground-based recordings of the nucleonic component with only a rather simple correction for atmospheric effects. Simpson (1957) extended the original pile to the 12 counter IGY neutron monitor which was deployed in a world wide network during the International Geophysical Year 1957/8. The desirability for monitors with higher counting rates became evident soon afterwards. Subsequently the NM64 super neutron monitor was designed by H. Carmichael for deployment in time for the International Quiet Sun Year 1964. Using unusually large 10BF3 proportional counters made at Chalk River, Hatton and Carmichael (1964) studied comprehensively the experimental design of the NM64. Consequently the efficiency of neutron counters to record evaporation neutrons produced in the lead of a monitor increased from 1.9% for the IGY to 5.7% for the NM64, an increase of 3.3 times the counting rate per unit area of lead producer. During the years much attention was given to the neutron multiplicity spectrum in neutron monitors. This spectrum is related to the energy spectrum of the nucleonic component incident on the neutron monitor, but is only weakly dependent on the spectrum of galactic cosmic rays at the top of the atmosphere. Contrary to galactic cosmic rays, solar flare protons and neutrons are observed predominantly as single counts per interaction, in multiplicity 1, because of the softness of solar flare particle energy spectra. Neutron monitors have also been specially designed to record solar neutrons with increased sensitivity. Newly developed 3He counters with a largely reduced thermal neutron absorption mean free path should lead to improved efficiency in recording primary cosmic radiation. Design criteria are discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Solar proton events can adversely affect space and ground-based systems. Ground-level events are a subset of solar proton events that have a harder spectrum than average solar proton events and are detectable on Earth’s surface by cosmic radiation ionization chambers, muon detectors, and neutron monitors. This paper summarizes the space weather effects associated with ground-level solar proton events during the 23rd solar cycle. These effects include communication and navigation systems, spacecraft electronics and operations, space power systems, manned space missions, and commercial aircraft operations. The major effect of ground-level events that affect manned spacecraft operations is increased radiation exposure. The primary effect on commercial aircraft operations is the loss of high frequency communication and, at extreme polar latitudes, an increase in the radiation exposure above that experienced from the background galactic cosmic radiation. Calculations of the maximum potential aircraft polar route exposure for each ground-level event of the 23rd solar cycle are presented. The space weather effects in October and November 2003 are highlighted together with on-going efforts to utilize cosmic ray neutron monitors to predict high energy solar proton events, thus providing an alert so that system operators can possibly make adjustments to vulnerable spacecraft operations and polar aircraft routes.  相似文献   

3.
A model of the time evolving relativistic solar proton spectra for the 7 May 1978 ground level solar cosmic ray event is presented. This event, with associated cosmic ray neutron monitor increases of over 100% and containing relativistic particles with energies greater than 10 GeV/nucleon was characterized by an extreme anisotropy and a rapidly evolving spectrum, particularly during the initial phase. The observational data from cosmic ray neutron monitors viewing in the anti-Sun direction (180° away from the initial solar particle direction) indicates that a back scatter pulse of 4% of the primary pulse was observed at the Earth 20 min after the event onset. Previous attempts to model the solar particle spectrum found consistent and systematic differences between the theoretically calculated cosmic ray increase and the actual increase as observed by neutron monitors. In order to reconcile these differences, we have concluded that the observational data give evidence for a rigidity dependent release of relativistic solar protons from the solar corona during the very early stages of this event.An invited paper presented at STIP Workshop on Shock Waves in the Solar Corona and Interplanetary Space, 15–19 June, 1980, Smolenice, Czechoslovakia.  相似文献   

4.
Lockwood  J.A.  Debrunner  H. 《Space Science Reviews》1999,88(3-4):483-500
We discuss the important parameters of solar neutron and proton emissions that can be determined by measurements with neutron monitors at the Earth. First, the methods of analysis for solar neutron events detected by neutron monitors are presented. Illustrations are given to show how these measurements can be used to understand the physics of the neutron production at the Sun. Second, the analytical methods for high-energy interplanetary solar proton events are presented. We then indicate how these observations of interplanetary solar protons can be used to infer the proton acceleration mechanisms at or near the Sun. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Relativistic solar proton events   总被引:1,自引:0,他引:1  
Energetic solar flare particles contain rich information concerning mechanisms of particle acceleration on the Sun and subsequent transport through turbulent interplanetary space. Even the most energetic particles, in particular protons with kinetic energy above 500 MeV, may undergo coronal and interplanetary propagation effects, disturbing their accelerated injection spectrum after release from the solar flare. Relativistic solar proton events are recorded by neutron monitors at ground level. A detailed knowledge of the response of these ground-based detectors to the impact by a beam of protons on the top of the atmosphere is required to analyze these observations. The spectral index of arriving protons can be obtained from the response of the world-wide network of neutron monitors provided their directional anisotropy is known. The spectral index may also by determined from the relative enhancements in count rates of two similar detectors at different altitudes but similar asymptotic cones of acceptances, or from the relative enhancements of two detectors with different spectral sensitivities but at the same location of high latitude. Ground level enhancements from solar flare protons have been recorded at Sanae, Antarctica, since 1971 by two neutron monitors with different sensitivities to primary protons in the rigidity range from 1 GV to 5 GV. Spectral indexes of about 20 of these more energetic solar flare proton events have been determined from the two detector enhancements recorded at Sanae. These indexes do not show any increase (softening of the relativistic proton spectra) with increasing heliolongitude away from the preferred IMF connection region as was obtained for 20–80 MeV protons. Furthermore, most of the enhanced count rates show fluctuations larger than statistical, indicative of propagation in a mostly turbulent interplanetary magnetic field.  相似文献   

6.
The experimental measurements of the neutron flux and energy spectrum in space since 1964 are reviewed and related to the theoretical predictions. A discussion of the neutron sources is presented. The difficulties associated with neutron measurements of both the atmospheric neutron leakage flux and solar neutrons are included. Particular emphasis is placed upon the neutron leakage flux and energy measurements at energies greater than about 1 MeV. The possibilities of CRAND as a source for the energetic trapped protons are discussed in light of recent measurements of the 10–100 MeV neutron flux. The current status of the solar neutron flux observations is also presented.The primary purposes of neutron measurements in space have been to determine the neutron leakage flux from the atmosphere of the Earth and the solar neutron flux. As a consequence of the inefficient methods for neutron detection and the difficulties of conducting the measurements in the presence of the galactic and solar cosmic-ray backgrounds, the experimental results are very conflicting. It is the purpose of this review to interpret and discuss recent neutron measurements. In order to understand these results the theoretical predictions of the neutron fluxes and energy spectra from possible neutron sources will be briefly presented. Since comparisons of the different neutron measurements depend critically upon the experimental techniques, we will briefly discuss neutron detection methods applicable to space measurements. The emphasis will be upon measurements since 1964 made outside the Earth's atmosphere, but considerable reference will be made to high energy neutron experiments conducted within the Earth's atmosphere at < 10g cm-2 altitude. A review of earlier neutron measurements of terrestrial and solar neutrons has been made by Haymes (1965).  相似文献   

7.
As the 21st century approaches, there is an ever-increasing interest in launching manned missions to Mars. A major concern to mission planners is exposure of the flight crews to highly penetrating and damaging space radiations. Beyond the protective covering of the Earth's magnetosphere, the two main sources of these radiations are galactic cosmic rays and solar particle events. Preliminary analyses of potential exposures from galactic cosmic rays (GCR's) were presented elsewhere. In this Note, estimates of shielding thicknesses required to protect astronauts on interplanetary missions from the effects of large solar flare events are presented. The calculations use integral proton fluences for the February 1956, November 1960, and August 1972 solar particle events as inputs into the NASA Langley Research Center nucleon transport code BRYNTRN. This deterministic computer code transports primary protons and secondary protons and neutrons through any number of layers of target material of arbitrary thickness and composition. Contributions from target nucleus breakup (fragmentation) and recoil are also included. The results for each flare are presented as estimates of dose equivalent [in units of roentgen equivalent man (rem)] to the skin, eye, and bloodforming organs (BFO) behind various thicknesses of aluminum shielding. These results indicate that the February 1956 event was the most penetrating; however, the August 1972 event, the largest ever recorded, could have been mission- or life-threatening for thinly shielded (< or = 5 g/cm2) spacecraft. Also presented are estimates of the thicknesses of water shielding required to reduce the BFO dose equivalent to currently recommended astronaut exposure limits. These latter results suggest that organic polymers, similar to water, appear to be a much more desirable shielding material than aluminum.  相似文献   

8.
Gamma-rays and neutrons are the only sources of information on energetic ions present during solar flares and on properties of these ions when they interact in the solar atmosphere. The production of ??-rays and neutrons results from convolution of the nuclear cross-sections with the ion distribution functions in the atmosphere. The observed ??-ray and neutron fluxes thus provide useful diagnostics for the properties of energetic ions, yielding strong constraints on acceleration mechanisms as well as properties of the interaction sites. The problem of ion transport between the accelerating and interaction sites must also be addressed to infer as much information as possible on the properties of the primary ion accelerator. In the last couple of decades, both theoretical and observational developments have led to substantial progress in understanding the origin of solar ??-rays and neutrons. This chapter reviews recent developments in the study of solar ??-rays and of solar neutrons at the time of the RHESSI era. The unprecedented quality of the RHESSI data reveals ??-ray line shapes for the first time and provides ??-ray images. Our previous understanding of the properties of energetic ions based on measurements from the former solar cycles is also summarized. The new results??obtained owing both to the gain in spectral resolution (both with RHESSI and with the non solar-dedicated INTEGRAL/SPI instrument) and to the pioneering imaging technique in the ??-ray domain??are presented in the context of this previous knowledge. Still open questions are emphasized in the last section of the chapter and future perspectives on this field are briefly discussed.  相似文献   

9.
In November 1992, the Ulysses spacecraft observed a multiple solar particle event and a CME event at 5.2 AU and a heliographic latitude of 20° S which were superimposed to the recurrent corotating interacting region. Distinct particle flux increases caused by these events were observed in all energy channels of the EPAC experiment. The experimental findings are discussed.  相似文献   

10.
针对如何部署光学探测设备才能更好实现对空间目标的高精度高频度监视问题,考虑光照条件、相对关系及探测性能,构建了天/地基空间目标探测与成像仿真模型;按照轨道特征选取了94颗LEO(Low Earth Orbit,低地球轨道)卫星、63颗GEO(Geosynchronous Earth Orbit,地球同步轨道)卫星和18颗大椭圆轨道卫星,选用春夏秋冬典型季节的特定时间长度,仿真分析了国内地基、南北极科考站、LEO卫星、准GEO卫星等多平台光电手段的位置探测和成像观测能力;比对分析地基平台纬度和季节、天基平台轨道高度和倾角对探测能力的影响得出:南北极科考站相比于国内站点可提高重点季节的探测时效性,98°倾角LEO平台对低轨目标成像时效性方面更具优势,等.在此基础上,提出了我国空间目标光电观测设备天地一体的布局构想.  相似文献   

11.
The first observations of solar cosmic rays were made simultaneously by many investigators at worldwide cosmic-ray stations in the periods of powerful chromospheric flares on February 28 and March 7, 1942. The discovery of these and the investigation of cosmic-ray solar-daily variations with maximum time near noon led some authors (Richtmyer and Teller, 1948; Alfvén, 1949, 1950) to a model of apparent cosmic-ray solar origin. We present here the results of the properties of solar cosmic rays from ground events (experimental and theoretical investigations). We also discuss important information from solar experimental data relating to these ground events observed in September and October 1989 and May 1990. Some experimental evidence of acceleration processes in associated phenomena with flares and long-term (solar cycle) variation of the average flux of solar cosmic rays is discussed as also cornal and interplanetary propagation, and that in the terrestrial magnetosphere. Note that the energy spectrum of solar cosmic rays varied very strongly from one flare to another. What are the causes of these phenomena? What is the nature of chemical and isotopic contents of solar cosmic rays? How can its changes occur in the energy spectrum and chemical contents of solar cosmic rays in the process of propagation? Is it possible to recalculate these parameters to the source? What makes solar cosmic rays rich in heavy nucleus and3He? The important data about electrons, positrons, gamma-quanta and neutrons from flares will be discussed in a subsequent paper (Dorman and Venkatesan, 1992). The question is: What main acceleration mechanism of solar flare and associated phenomena are reliable? These problems are connected with the more general problem on solar flare origin and its energetics. In Dorman and Venkatesan (1993) we will consider these problems as well as the problem of prediction of radiation hazard from solar cosmic rays (not only in space, but also in the Earth's atmosphere too).  相似文献   

12.
Ground level events (GLEs) occupy the high-energy end of gradual solar energetic particle (SEP) events. They are associated with coronal mass ejections (CMEs) and solar flares, but we still do not clearly understand the special conditions that produce these rare events. During Solar Cycle 23, a total of 16 GLEs were registered, by ground-based neutron monitors. We first ask if these GLEs are clearly distinguishable from other SEP events observed from space. Setting aside possible difficulties in identifying all GLEs consistently, we then try to find observables which may unmistakably isolate these GLEs by studying the basic properties of the associated eruptions and the active regions (ARs) that produced them. It is found that neither the magnitudes of the CMEs and flares nor the complexities of the ARs give sufficient conditions for GLEs. It is possible to find CMEs, flares or ARs that are not associated with GLEs but that have more extreme properties than those associated with GLEs. We also try to evaluate the importance of magnetic field connection of the AR with Earth on the detection of GLEs and their onset times. Using the potential field source surface (PFSS) model, a half of the GLEs are found to be well-connected. However, the GLE onset time with respect to the onset of the associated flare and CME does not strongly depend on how well-connected the AR is. The GLE onset behavior may be largely determined by when and where the CME-driven shock develops. We could not relate the shocks responsible for the onsets of past GLEs with features in solar images, but the combined data from the Solar TErrestrial RElations Observatory (STEREO) and the Solar Dynamics Observatory (SDO) have the potential to change this for GLEs that may occur in the rising phase of Solar Cycle 24.  相似文献   

13.
Gamma-ray observations from HINOTORI satellite and possible neutron observations from the Tokyo neutron monitor are reviewed. Time histories of gamma-ray and X-ray emissions for both typical impulsive and gradual flares are discussed in connection with the particle acceleration time. The gamma-ray spectral hardening observed around 400 keV is explained from superimposition of two different electron bremsstrahlung spectra. Proton-energy spectra derived from the gamma-ray observations are compared with the solar energetic particle spectra in interplanetary space. The weak correlation between the gamma-ray fluence and the proton flux is discussed in connection with the particle trapping and escaping in the flare region. The limb darkening of the 2.22 MeV line resulting from neutron-proton capture is interpreted in terms of the attenuation by the Compton scattering in the photosphere. Possible solar neutron events recorded by the Tokyo neutron monitor are presented and the correlation between the gamma-ray fluence and the neutron fluence are described.  相似文献   

14.
A series of spectacular cosmic ray events which included two relativistic solar particle enhancements and three major Forbush decreases were registered by ground-based cosmic ray monitoring stations beginning 4 August, 1972. These were associated with four major proton flare events on the Sun and with large interplanetary magnetic field disturbances and high velocity shock waves. This review attempts to discuss and interpret the high energy cosmic ray phenomena observed during this period in the light of the known behaviour of low energy particulate flux, interplanetary plasma and field observations and other associated solar and terrestrial effects recorded during this period.The first Forbush decrease event FD-1 occurred in the early hours of 4 August, exhibiting very strong north-south and east-west anisotropies. Immediately following the onset of FD-1, the first ground level solar particle enhancement occurred. This event, which had its onset almost 6 h after the flare event on 4 August, had a very steep rigidity spectrum. The major Forbush event of the series which had its onset at 2200 UT on 4 August, exhibited extremely interesting and complex behaviour, the prominent features of which are a precursory increase prior to the onset (PI-1), a large decrease (FD-2), the largest observed to date, followed immediately by an abrupt square wave like enhancement (PI-2). Interplanetary space during this entire period was highly disturbed by the presence of large low energy particulate fluxes and shock waves, at least one of which had a velocity exceeding 2000 km s-1. Large north-south and east-west anisotropies existed throughout the event. Both FD-2 and PI-2 were characterized by almost the same rigidity spectrum, with a power law index of -1.2 ± 0.2, and a predominant anisotropy along the sunward direction. The square wave-like spike PI-2 during the recovery of FD-2 was associated with a similar abrupt change in low energy particle flux in space, as well as an abrupt decrease in the interplanetary magnetic field value from 50 to 10 .Based on the available particle, field and plasma observations, an unified model is presented to explain the Forbush event in terms of a transient modulating region associated with the passage of a narrow magnetic shock front. In this model, the reflection of particles from the approaching shock front account for the precursory increase PI-1. The main Forbush event is caused when the magnetic barrier at the shock front sweeps past the Earth. The square wave increase is due to the enhanced flux contained in the magnetic well just behind the shock front and bounded by magnetic discontinuities, which is explained as due to the transverse diffusion of particles into this region from the interplanetary space which have easy access to this region. In situ plasma, field and low energy particle observations are reviewed to support the model.Also Professor at Physical Research Laboratory, Ahmedabad 380009, India.  相似文献   

15.
WIND Observations of Suprathermal Electrons in the Interplanetary Medium   总被引:1,自引:0,他引:1  
Lin  R.P. 《Space Science Reviews》1998,86(1-4):61-78
We review some of the new results for suprathermal electrons obtained with the 3-D Plasma and Energetic Particle Instrument on the WIND spacecraft, which provides high sensitivity electron and ion measurements from solar wind thermal plasma up to ≳MeV energies. These results include: (1) the observation of solar impulsive electron events extending down to ∼0.5 keV energy; (2) the observation of a turnover at ∼12 keV for electrons in a gradual large solar energetic particle (LSEP) event; (3) the detection of a quiet-time population (the ‘superhalo’) of electrons extending up to ∼100 keV energy; and (4) the probing of the magnetic topology and source region for magnetic clouds, using electrons. These unique WIND measurements are highly complementary to the particle composition measurements which will be made by ACE. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
The polarD-region has been little studied. A major part of this review concerns observations performed during the 1969, November, 2–5, solar proton event. These extensive measurements and subsequent interpretations constitute a major source of polarD-region knowledge. The aeronomic concepts garnered from the analysis of this event are discussed and compared with results from other events and other polar mesospheric data. Some mid-latitude data are resorted to for supplementary arguments. Ionization rates due to precipitating protons and alpha-particles are reviewed, particularly in view of the fact that some workers have suggested that the more intense events may influence stratospheric ozone chemistry.  相似文献   

17.
Interactions of ions accelerated in solar flares produce gamma-ray lines and continuum and neutrons. These emissions contain a rich set of observables that provides information about both the accelerated ions and the environment where the ions are transported and interact. Ion interactions with the various nuclei present in the ambient medium produce gamma-ray lines at unique energies. How abundance information is extracted from the measurements is discussed and results from analyses of a number of solar flares are presented. The analyses indicate that the composition of the ambient gas where the ions interact (typically at chromospheric densities) is different from that of the photosphere and more like the composition of the corona, exhibiting low-FIP elemental enhancements that may vary from flare to flare. Evidence for increased Ne/O and the photospheric 3He abundance is also discussed.  相似文献   

18.
McMath Plage 15266, which transited the solar disk during Carrington Rotation 1667, gave rise during its passage to a spectacular sequence of five proton producing flares. Solar circumstances leading up to the formation of the active plage are described. An account is given of the magnetic affiliations and optical characteristics of the flares themselves, and it is suggested that four of these events might be interpreted as two twin phase flares displaying secondary maxima and minima such that the second phase in each case could in some sense be deemed a consequence of phenomena initiated during the first phase. Those particle phenomena associated with the observed activity are reviewed, and it is suggested that the azimuthal propagation of solar cosmic rays in the corona may occur more efficiently for flares at eastern longitudes in which the magnetic axis is aligned in a roughly north to south rather than an east-to-west direction.An invited paper presented at STIP Workshop on Shock Waves in the Solar Corona and Interplanetary Space, 15–19 June, 1980, Smolenice, Czechoslovakia.  相似文献   

19.
Recently we have shown how the slow solar wind can be formed within a coronal helmet streamer. The solar wind is modeled by a "wake-neutral" sheet, whose subsequent linear and nonlinear evolution provides clues to the development of the wind. In this paper we describe the first results of our extension of this model to the compressible regime. In particular, we show that traveling density enhancements are formed, similar to those observed by LASCO. The compressible equations are solved by an extension to MHD of the SPECLS algorithm. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
The Time Structure of Ground Level Enhancements in?Solar Cycle 23   总被引:1,自引:0,他引:1  
In a recent paper McCracken et al. (J. Geophys. Res. 113:A12101, 2008) proposed that the Ground Level Enhancement (GLE) of 20 January 2005 may have been produced by more than one acceleration mechanism, with the first acceleration due to the solar flare and the second one due to the CME associated with that event. They also noted several other GLEs with similar multiple pulse structures. This paper systematically investigates all the GLEs of solar cycle 23, from GLE 55 on 6 November 1997 to GLE 70 on 13 December 2006, to study their morphology and pulse structure, and to determine whether the multiple structures that may be found in these events are qualitatively similar to that of the GLE of 20 January 2005. We use all the data of all NMs that saw each event, to have as much directional and spectral information as possible. It is shown that three of these 16 events do contain such double-pulse structures, and the properties of these three are discussed in some detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号