首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 590 毫秒
1.
Coronal plumes are believed to be essentially magnetic features: they are rooted in magnetic flux concentrations at the photosphere and are observed to extend nearly radially above coronal holes out to at least 15 solar radii, probably tracing the open field lines. The formation of plumes itself seems to be due to the presence of reconnecting magnetic field lines and this is probably the cause of the observed extremely low values of the Ne/Mg abundance ratio. In the inner corona, where the magnetic force is dominant, steady MHD models of coronal plumes deal essentially with quasi-potential magnetic fields but further out, where the gas pressure starts to be important, total pressure balance across the boundary of these dense structures must be considered. In this paper, the expansion of plumes into the fast polar wind is studied by using a thin flux tube model with two interacting components, plume and interplume. Preliminary results are compared with both remote sensing and solar wind in situ observations and the possible connection between coronal plumes with pressure-balance structures (PBS) and microstreams is discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
A dependence of the polar cap magnetic flux on the interplanetary magnetic field and on the solar wind dynamic pressure is studied. The model calculations of the polar cap and auroral oval magnetic fluxes at the ionospheric level are presented. The obtained functions are based on the paraboloid magnetospheric model calculations. The scaling law for the polar cap diameter changing for different subsolar distances is demonstrated. Quiet conditions are used to compare theoretical results with the UV images of the Earth’s polar region obtained onboard the Polar and IMAGE spacecrafts. The model calculations enable finding not only the average polar cap magnetic flux but also the extreme values of the polar cap and auroral oval magnetic fluxes. These values can be attained in the course of the severe magnetic storm. Spectacular aurora often can be seen at midlatitude during severe magnetic storm. In particularly, the Bastille Day storm of July 15–16, 2000, was a severe magnetic storm when auroral displays were reported at midlatitudes. Enhancement of global magnetospheric current systems (ring current and tail current) and corresponding reconstruction of the magnetospheric structure is a reason for the equatorward displacement of the auroral zone. But at the start of the studied event the contracted polar cap and auroral oval were observed. In this case, the sudden solar wind pressure pulse was associated with a simultaneous northward IMF turning. Such IMF and solar wind pressure behavior is a cause of the observed aurora dynamics.  相似文献   

3.
Cool giant and supergiant stars generally present low velocity winds with high mass-loss rates. Several models have been proposed to explain the acceleration process of these winds. Although dust is known to be present in these objects, the radiation pressure on these particles is uneffective in reproducing the observed physical parameters of the wind. The most promising acceleration mechanism cited in the literature is the transference of momentum and energy from Alfvén waves to the gas. Usually, these models consider the wind to be isothermal. We present a stellar wind model in which the Alfvén waves are used as the main acceleration mechanism, and determine the temperature profile by solving the energy equation taking into account both the radiative losses and the wave heating. We also determine, self-consistently, the magnetic field geometry as the result of the competition between the magnetic field and the thermal pressure gradient. As the main result, we show that the magnetic geometry presents a super-radial index in the region where the gas pressure is increasing. However, this super-radial index is greater than that observed for the solar corona.  相似文献   

4.
The results of research of the morphology and physics of polar magnetic disturbances and their connection with three-dimensional magnetospheric currents are reviewed. Magnetic disturbance current systems are examined, also their relation to solar wind parameters and magnetic activity level and their seasonal dependence. On the basis of numerical model calculations it is shown that magnetospheric field-aligned currents observed by the TRIAD and ISIS-2 satellites are the main generation mechanism of high-latitude magnetic disturbances. Plasma pressure gradients are examined as a source of energy for driving field-aligned currents in the closed magnetosphere.  相似文献   

5.
Seven different models are applied to the same problem of simulating the Sun’s coronal magnetic field during the solar eclipse on 2015 March 20. All of the models are non-potential, allowing for free magnetic energy, but the associated electric currents are developed in significantly different ways. This is not a direct comparison of the coronal modelling techniques, in that the different models also use different photospheric boundary conditions, reflecting the range of approaches currently used in the community. Despite the significant differences, the results show broad agreement in the overall magnetic topology. Among those models with significant volume currents in much of the corona, there is general agreement that the ratio of total to potential magnetic energy should be approximately 1.4. However, there are significant differences in the electric current distributions; while static extrapolations are best able to reproduce active regions, they are unable to recover sheared magnetic fields in filament channels using currently available vector magnetogram data. By contrast, time-evolving simulations can recover the filament channel fields at the expense of not matching the observed vector magnetic fields within active regions. We suggest that, at present, the best approach may be a hybrid model using static extrapolations but with additional energization informed by simplified evolution models. This is demonstrated by one of the models.  相似文献   

6.
Magnetic effects are ubiquitous and known to be crucial in space physics and astrophysical media. We have now the opportunity to probe these effects in the outer heliosphere with the two spacecraft Voyager 1 and 2. Voyager 1 crossed, in December 2004, the termination shock and is now in the heliosheath. On August 30, 2007 Voyager 2 crossed the termination shock, providing us for the first time in-situ measurements of the subsonic solar wind in the heliosheath. With the recent in-situ data from Voyager 1 and 2 the numerical models are forced to confront their models with observational data. Our recent results indicate that magnetic effects, in particular the interstellar magnetic field, are very important in the interaction between the solar system and the interstellar medium. We summarize here our recent work that shows that the interstellar magnetic field affects the symmetry of the heliosphere that can be detected by different measurements. We combined radio emission and energetic particle streaming measurements from Voyager 1 and 2 with extensive state-of-the art 3D MHD modeling, to constrain the direction of the local interstellar magnetic field. The orientation derived is a plane ~60°–90° from the galactic plane. This indicates that the field orientation differs from that of a larger scale interstellar magnetic field, thought to parallel the galactic plane. Although it may take 7–12 years for Voyager 2 to leave the heliosheath and enter the pristine interstellar medium, the subsonic flows are immediately sensitive to the shape of the heliopause. The flows measured by Voyager 2 in the heliosheath indicate that the heliopause is being distorted by local interstellar magnetic field with the same orientation as derived previously. As a result of the interstellar magnetic field the solar system is asymmetric being pushed in the southern direction. The presence of hydrogen atoms tend to symmetrize the solutions. We show that with a strong interstellar magnetic field with our most current model that includes hydrogen atoms, the asymmetries are recovered. It remains a challenge for future works with a more complete model, to explain all the observed asymmetries by V1 and V2. We comment on these results and implications of other factors not included in our present model.  相似文献   

7.
Book reviews     
The general significance of streamers of the solar corona is discussed in the frame of our knowledge of the solar wind phenomenon and the large-scale solar magnetic structure. Thermodynamical and geometric parameters of streamers observed and measured at total solar eclipses are reviewed. Both the low part (in the form of a helmet with a cusp) and the external part (in the form of a stalk extended at many solar radii) are considered. The modelling of streamers starts with the analysis of effects produced by the solar wind flow on a magnetic structure. Facts and arguments are presented in favor of a model with a current sheet and reconnection processes going on along the axis of the streamer, especially in the non-collisional part of the radially extended streamer. Further development of the Pneuman and Kopp (1971) model is discussed, including difficulties occurring in the interpretation of a stationary solution. An empirical model satisfying observations is presented. Future researchs on streamers were discussed with emphasis on observations to be done with the space-borne coronagraphs on the SOHO spacecraft.  相似文献   

8.
袁硕  刘天羽 《航空动力学报》2018,45(2):71-74, 127
为满足爬壁机器人在狭窄的发电机定子气隙中能可靠地运行,设计了一种基于Halbach阵列的永磁吸附单元。使用Ansoft Maxwell 软件建立二维磁场模型,采用有限元分析法对新型吸附单元的磁场进行分析,得到了其磁力线与磁感应强度的分布;通过与传统永磁吸附单元磁场的比较,得出新型吸附单元具有永磁磁能利用率高、单边磁场的特点,验证了新型吸附单元在发电机定子气隙中吸附的可靠性;并分析了结构参数的变化对吸附性能的影响,为吸附单元结构设计提供了参考数据。  相似文献   

9.
The magnetotail and substorms   总被引:5,自引:0,他引:5  
The tail plays a very active and important role in substorms. Magnetic flux eroded from the dayside magnetosphere is stored here. As more and more flux is transported to the magnetotail and stored, the boundary of the tail flares more, the field strength in the tail increases, and the currents strengthen and move closer to the Earth. Further, the plasma sheet thins and the magnetic flux crossing the neutral sheet lessens. At the onset of the expansion phase, the stored magnetic flux is returned from the tail and energy is deposited in the magnetosphere and ionosphere. During the expansion phase of isolated substorms, the flaring angle and the lobe field strength decrease, the plasma sheet thickens and more magnetic flux crosses the neutral sheet.In this review, we discuss the experimental evidence for these processes and present a phenomenological or qualitative model of the substorm sequence. In this model, the flux transport is driven by the merging of the magnetospheric and interplanetary magnetic fields. During the growth phase of substorms the merging rate on the dayside magnetosphere exceeds the reconnection rate in the neutral sheet. In order to remove the oversupply of magnetic flux in the tail, a neutral point forms in the near earth portion of the tail. If the new reconnection rate exceeds the dayside merging rate, then an isolated substorm results. However, a situation can occur in which dayside merging and tail reconnection are in equilibrium. The observed polar cap electric field and its correlation with the interplanetary magnetic field is found to be in accord with open magnetospheric models.  相似文献   

10.
Reconstructed attitude data for the Hipparcos mission as obtained in the final stages of the data analysis for the published catalogue is used to derive detailed information on the dynamics of the satellite. Most elements of the inertia tensor of the satellite could be calibrated from the observed acceleration data, which are also used to reconstruct torques due to solar radiation and gravity gradient, and the magnetic moment of the satellite and it's interaction with the magnetic field surounding the Earth. The effects of the oblateness of the Earth on the gravity gradient are evaluated and shown to be negligable. The magnetic field model includes both the `main' and the `disturbance' fields. The remaining systematic effects in residual torques are most likely attributed to variations in the magnetic field that are local and are beyond the models used to describe it. The angular momentum vector for one of the gyros was reconstructed from the torque it asserted on the satellite while it was running in redundant mode. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Energetic particles in the heliosphere, from relatively low-energy particles which are accelerated in Corotating Interaction Regions (CIRs) to galactic cosmic rays, are observed to propagate relatively easily in heliographic latitude. Two mechanisms for this transport appear possible: cross-field diffusion, or, in a recent model for the heliospheric magnetic field, by direct magnetic connection. The commonalties and differences of these two mechanisms are considered, and the need for future observations and modeling efforts are discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
An acceleration process in the collapsing magnetic trap, formed in the flare with cusp magnetic field topology, is described. Computations show that high-energy electrons are accumulated in the central part of the collapsing magnetic trap due to an increase of their pitch angles. The effect explains in a natural way the formation of X-ray loop-top sources. Then, using the model with the collapsing trap and considering only the adiabatic heating process, a possible explanation for the motion of the X-ray loop-top source observed at the beginning of some cusp-type flares is presented.  相似文献   

13.
磁悬浮反作用飞轮剩磁矩分析与补偿方法研究   总被引:2,自引:0,他引:2  
乐韵  房建成  汤继强  王曦 《航空学报》2011,32(5):881-890
为对磁悬浮反作用飞轮的剩磁矩(RMM)进行分析及最小化设计,提出一种基于等效磁偶极子模型的剩磁矩计算方法.利用有限元仿真空间磁场分布,通过选取3个特征平面的磁场反推得到剩磁矩.对不同工作状态下飞轮样机剩磁矩的大小及变化范围进行了分析,并在此基础上给出了磁悬浮反作用飞轮剩磁矩优化设计方法及补偿方法.分析结果表明.通过磁轴...  相似文献   

14.
高温气体效应会严重影响高温气体流场的流动特性,进而影响高超声速磁流体控制效率。基于低磁雷诺数假设,通过耦合求解带电磁源项的三维Navier-Stokes流场控制方程和电场泊松方程,开展完全气体模型、平衡气体模型、化学非平衡气体模型、热化学非平衡气体模型等条件下的高超声速磁流体控制数值模拟,分析气体模型对磁流体控制的影响,研究高温气体各种非平衡效应及焦耳热振动能量配比等对高超声速磁流体控制的影响规律。研究表明:化学非平衡效应对高超声速磁流体控制影响显著,采用化学非平衡气体模型模拟得到的磁控增阻特性介于完全气体模型和平衡气体模型之间,平衡气体和完全气体模型磁控热流变化的定性规律,与非平衡气体模型模拟结果差异很大;热力学非平衡效应对高超声速磁流体控制的影响,与焦耳热振动能量作用比率紧密相关,随该配比增大,磁场增阻效果由67%降到约12%;高温气体效应会极大地降低磁控增阻效果,会明显地增强部分表面区域的磁控热流减缓效果,要准确数值模拟高超声速磁流体控制,必须有效地考虑化学和热力学非平衡效应,同时选用接近实际情况的焦耳热振动能量配比。  相似文献   

15.
The 1974 mini-cycle is a medium term cosmic ray modulation event with about one year duration. It occurred in an A>0 epoch of solar magnetic polarity during conditions of low activity, but with an increase in the latitudinal extent of the heliospheric current sheet (tilt angle α) and the magnitude B of the heliospheric magnetic field. This cosmic ray decrease can be used to test the hypothesis that such large scale decreases (mini cycles) may be caused primarily by a combination of changes in α and B. For this purpose a fully time-dependent 2D model of solar modulation is used, which includes the effects of global and current sheet drifts, and anisotropic perpendicular diffusion. Such models have been used successfully to describe the proton energy spectrum as well as the radial and latitudinal gradients near 1 AU. Comparison of the model solutions with the observed decrease for 1.8 GV protons allows us to study the combined influence of variable drift and diffusion effects throughout the event. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
The large-scale coronal magnetic fields of the Sun are believed to play an important role in organizing the coronal plasma and channeling the high and low speed solar wind along the open magnetic field lines of the polar coronal holes and the rapidly diverging field lines close to the current sheet regions, as has been observed by the instruments aboard the Ulysses spacecraft from March 1992 to March 1997. We have performed a study of this phenomena within the framework of a semi-empirical model of the coronal expansion and solar wind using Spartan, SOHO, and Ulysses observations during the quiescent phase of the solar cycle. Key to this understanding is the demonstration that the white light coronagraph data can be used to trace out the topology of the coronal magnetic field and then using the Ulysses data to fix the strength of the surface magnetic field of the Sun. As a consequence, it is possible to utilize this semi-empirical model with remote sensing observation of the shape and density of the solar corona and in situ data of magnetic field and mass flux to predict values of the solar wind at all latitudes through out the solar system. We have applied this technique to the observations of Spartan 201-05 on 1–2 November, 1998, SOHO and Ulysses during the rising phase of this solar cycle and speculate on what solar wind velocities Ulysses will observe during its polar passes over the south and the north poles during September of 2000 and 2001. In order to do this the model has been generalized to include multiple streamer belts and co-located current sheets. The model shows some interesting new results. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
We have developed a new model of the coronal and interplanetary magnetic field. The model includes the effects of large-scale horizontal electric currents flowing in the inner corona, of the warped heliospheric current sheet, and of heliospheric volume currents in the super-Alfvenic solar wind. The model determines the interplanetary magnetic field (IMF) strength as well as its polarity from measurements of the photospheric magnetic field. A detailed comparison between the observed and calculated in-ecliptic IMF Bx in Cycles 22, confirms the fitness of the optimal set of free parameters inferred using data in Cycle 21. We can predict the latitudinal gradient of Bx in the declining phase of Cycle 22 and the temporal variation of the amplitude of the radial component of the IMF at various latitudes. The calculated IMF polarity and Bx strength agree best with the in-ecliptic observations when the photospheric field (measured with a 5250Å magnetograph) is scaled up by a factor of two. Ulysses may provide the critical data to improve the model and check these inferences.  相似文献   

18.
Non-thermal components are key ingredients for understanding clusters of galaxies. In the hierarchical model of structure formation, shocks and large-scale turbulence are unavoidable in the cluster formation processes. Understanding the amplification and evolution of the magnetic field in galaxy clusters is necessary for modelling both the heat transport and the dissipative processes in the hot intra-cluster plasma. The acceleration, transport and interactions of non-thermal energetic particles are essential for modelling the observed emissions. Therefore, the inclusion of the non-thermal components will be mandatory for simulating accurately the global dynamical processes in clusters. In this review, we summarise the results obtained with the simulations of the formation of galaxy clusters which address the issues of shocks, magnetic field, cosmic ray particles and turbulence.  相似文献   

19.
Effect of Nb contents on microstructure and magnetic properties of FeCoNbB films has been studied. X-ray diffraction (XRD) analysis reveals that Nb plays a role in refining grain and in facilitating formation of amorphous structure. When Nb content is more than 8 at%, the films transform from crystalline to amorphous structure, accompanied by variations in magnetic properties. An unusual out-of-plane anisotropy component is consequently observed. It can be suggested that the anisotropy induced by increasing Nb contents be attributed to stress-related magnetoelastic anisotropy. The undesirable anisotropy is greatly reduced by thermal annealing, reducing film thicknesses or applying an external magnetic field together with Si addition.  相似文献   

20.
At the ionospheric level, the substorm onset (expansion phase) is marked by the initial brightening and subsequent breakup of a pre-existing auroral arc. According to the field line resonance (FLR) wave model, the substorm-related auroral arc is caused by the field-aligned current carried by FLRs. The FLRs are standing shear Alfvén wave structures that are excited along the dipole/quasi-dipole lines of the geomagnetic field. The FLRs (that can cause auroral arc) thread from the Earthward edge of the plasma sheet and link the auroral arc to the plasma sheet region of 6–15 R E. The region is associated with magnetic fluctuations that result from the nonlinear wave-wave interactions of the cross-field current-instability. The instability (excited at the substorm onset) disrupts the cross-tail current which is built up during the growth phase of the substorms and results in magnetic fluctuations. The diversion of the current to polar regions can lead to auroral arc intensification. The current FLR model is based on the amplitude equations that describe the nonlinear space-time evolution of FLRs in the presence of ponderomotive forces exerted by large amplitude FLRs (excited during substorms). The present work will modify the FLR wave model to include the effects arising from magnetic fluctuations that result from current disruption near the plasma sheet (6–15 R E). The nonlinear evolution of FLRs is coupled with the dynamics of plasma sheet through a momentum exchange term (resulting from magnetic fluctuations due to current disruption) in the generalized Ohm's law. The resulting amplitude equations including the effects arising from magnetic fluctuations can be used to study the structure of the auroral arcs formed during substorms. We have also studied the role of feedback mechanism (in a dipole geometry of the geomagnetic field) in the formation of the discrete auroral arc observed on the nightside magnetosphere. The present nonlinear dispersive model (NDM) is extended to include effects arising from the low energy electrons originating from the plasma sheet boundary layer. These electrons increase the ionospheric conductivity in a localized patch and enhance the field-aligned current through a feedback mechanism. The feedback effects were studied numerically in a dipole geometry using the the NDM. The numerical studies yield the magnitude of the field-aligned current that is large enough to form a discrete auroral arc. Our studies provide theoretical support to the observational work of Newell et al. that the feedback instability plays a major role in the formation of the discrete auroral arcs observed on the nightside magnetosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号