首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文针对TDRSS(跟踪和数据中继卫星系统)的两颗中继卫星(地球赤道同步卫星)的双差分数据,给出了确定用户星(放跟踪航天器)轨道的一种方法。由于减小了中继卫星星历误差对用户星位置误差的影响,消除了中继卫星仪器误差,特别是完全消除了中继卫星、用户星和地面站问的任何时钟误差的影响,因此,对提高用户星测轨精度是十分有利的。  相似文献   

2.
本文根据人造卫星测轨的单位矢量法基本原理,利用跟踪和数据中继卫星系统(TDRSS)的两颗中继卫星双差分数据,给出了一种独立测定用户星轨道的新方法。  相似文献   

3.
NASA将利用跟踪与数据中继卫星系统(TDRSS)对地球卫星进行跟踪和通信。本文评述了利用TDRSS为航天器导航的能力。用加权最小二乘批处理技术拟合跟踪测量值,得到东TDRS卫星和几个用户航天器的轨道解。所研究的用户航天器有太阳峰年卫星(SMM),陆地卫星-5,地球辐射预算卫星(ERBS)和太阳散逸层探测器(SME)。以相继轨道解的一致性作为度量,评定了东TDRS卫星的轨道精度。将TDRSS跟踪获得的用户航天器轨道与同一时间由地面跟踪获得的结果进行比较,确定了用户航天器的轨道精度。研究了跟踪测量值特性和摄动力模型计算对轨道解的影响。介绍了东TDRS卫星和用户航天器的轨道确定结果,对这些结果进行的分析和评价以及由此得出的一些重要结论。  相似文献   

4.
本文根据人造卫星测轨的单位矢量法基本原理,利用跟踪和数据中继卫星系统(TDRSS)的两颗中继卫星双差分数据,给出了一种独立测定用户星轨道的新方法。  相似文献   

5.
COMRING(通信环)是一种适用于低轨卫星的数据中继系统新设想,该系统可在低轨航天器与地面间连续传递数据(典型的可传输时间为80~100%)。该系统可提供连续的全球覆盖而无需大规模的地面站网和不可靠的星上数据记录仪。COMRING采用7~9颗小卫星(每颗重160kg)以等间隔配置在用户星同一轨道上,数据的中继经由星际链路完成。用户星可以是一颗遥感卫星或一颗军用侦察卫星。用于空间站的COMRING将置于更高的轨道上以减小大气阻力影响。COMRING的数据传输速率可高达150Mbps。Kayser-Threde拥有这一方案的专利,并已于1996年在为DARA所做的广泛研究中证明了它的可行性。初步的成本估计表明,中继每Mbyte数据的成本与TDRSS(跟踪数据与中继卫星系统)相当。然而,由于COMRING专用于单一用户,它比TDRSS的可利用率更高,因为TDRSS已达到了它的极限能力。  相似文献   

6.
哥达德航天中心飞行动力学部委托应用技术联合公司在基于DOS个人计算机上开发实时定轨/增强型系统(RTOD/E),作成卫星轨道序贯测定法的样机系统。本文介绍了研究结果,即比较了TDRSS用户星——陆地星—4利用在个人计算机上运行的RTOD/E的定轨精度和利用在主机上运行的哥达德测轨系统(GTDS)正规成批最小二乘系统的精度。陆地星—4测轨结果将为地球观测系统(EOS)系列卫星提供很有用的经验。确定了1992年5月18日到24日的陆地星—4的星历表,这一段时间有密集的TDRSS对其的跟踪数据。期间发生了二次独立的调轨机动,一次是TDRS卫星(东TDRS),另一次是陆地星—4轨道微调机动。对成批法和序贯法得出的轨道解进行了多种独立的一致性检验(成批法是重迭比对,序贯法是协方差和一次测量残差)。陆地星前向滤波的RTOD/E轨道解与确定性的GTDS轨道解进行比较;当滤波器进入稳态后,两轨道解的差一般小于30米。  相似文献   

7.
业已证明近地卫星在地球动力学和海洋学研究方面是非常有用的。但是,一项重要限制是卫星轨道状态的确定精度。一般通过处理由地面跟踪网所获得的无线电跟踪数据进行卫星定轨。使用这种地面无线电技术,目前所能达到的定轨精度为米级。对于地球动力学应用和完成海洋学的研究,必须将大地水准面测定到1m以下。本文研究一种应用GPS的定轨技术,采用新的测量方法和数据处理方法可改善定轨精度。我们利用干涉测量的方法来完成用户卫星的高精度定位。巧妙布置少量地面站,使任何一对地面站和用户星总能看见4颗以上的GPS卫星组成的星座。接着本文介绍了使用无线电干涉测量值定轨的误差分析结果,结果表明通过事后数据处理,用这种技术,卫星位置精度可达到所需要的分米级。给出的结果还表明无线电干涉测量对更精确的地球卫星轨道确定也是很有价值的。  相似文献   

8.
嫦娥四号月球探测拟首次实现月球背面的软着陆,测控与数传依赖地月L2平动点的中继卫星,并有望获取四程测量与星间测量数据。对基于中继测量的环月探测器测定轨能力进行了仿真分析,结果表明,中继卫星可较好地实现环月探测器连续跟踪;在定轨能力方面,中继卫星自身轨道精度是制约环月探测器定轨精度的重要因素,当跟踪弧段达到5h以上时,定轨精度趋于稳定,但轨道精度较中继卫星的轨道精度相差1个量级;对于星间链路测量,除中继卫星自身的轨道精度外,星钟的稳定性是制约定轨精度的另一个重要因素,如果辅助以每天1h的地基跟踪亦可实现优于百m的定轨精度。  相似文献   

9.
本文研究了使用这样一种GPS测量值——双差分GPS射频多普勒确定低轨地球卫星的轨道。该测量值很容易获得,而且不受时钟误差的影响,还可对用户卫星连续定轨。分析表明:使用18颗GPS卫星的星座和13个地面站,在两小时跟踪后,可使1300km高度用户星(TOPEX)的定轨精度达5cm。考察了使用少于13个地面站的影响,不同求解方法的影响以及引入虚假推力参数以减小重力模型误差(主要误差源之一)的影响。  相似文献   

10.
联合定轨技术及其应用前景   总被引:1,自引:1,他引:1  
研究了联合定轨的基本原理并给出了计算方法,通过对中继卫星系统和编队飞行星座两种不同应用的联合定轨的计算分析,总结出了联合定轨不同于一般传统定轨的基本特点。中继卫星与用户星的联合定轨在精度 上优于传统定轨,并能够降低对地面测量站的测量几何和测站数量的要求。编队飞行星座的联合定轨,能够显著提高星间相对位置的精度,且几乎不受动力学模型误差的影响,从而在轨道外推时误差不会扩大。  相似文献   

11.
中继卫星在跟踪自主机动用户目标时,由于机动轨道未知,需要利用中继卫星下传的星载GNSS(Global Navigations Satellite System,全球导航卫星系统)数据进行实时轨道确定与预报,为中继卫星跟踪提供实时的引导信息,以方便中继卫星快速捕获目标和连续稳定跟踪。针对该类用户目标的任务需求,讨论了基于星载GNSS数据自主机动条件下的实时定轨方法,建立了连续推力机动力学模型。以某一型号卫星的实测数据进行分析验证,并对轨道机动进行辨识,计算的机动加速度和机动时间与试验单位提供的结果一致。针对卫星不同机动情况,5min的观测数据定轨预报10min的弧段,最大位置误差小于8km,可以为中继卫星快速捕获提供高精度的引导信息。  相似文献   

12.
CE-2小行星探测试验轨道快速重建研究   总被引:1,自引:0,他引:1  
"嫦娥二号"实施小行星探测试验,与小行星交会时卫星距离地球约700万km,此飞行阶段卫星定轨计算精度非常依赖于测轨数据的弧长。卫星最后两次轨道修正只有13天时间,而实现小行星拍照试验指标要求轨道精度优于15km。如何利用有限的测轨数据实现高精度定轨是小行星探测试验必须解决的重要问题。针对控后跟踪弧段有限的特点,以10月9日控后飞行阶段为分析对象,设计了不同的定轨策略,并比较定轨计算的精度。计算结果表明,融合轨控前后的测轨数据开展定轨计算,可以有效提升定轨计算精度。利用控前1个月和控后10天的测轨数据进行定轨计算与控后6周数据定轨计算精度相当。  相似文献   

13.
九十年代将用跟踪数据采集系统(TDA5)取代现在的跟踪与数据中继卫星系统(TDRSS)。现在正在研究通过该TDAS为用户航天器提供测轨/测时功能的各种方案。TDRSS中所用的双向测距和多卜勒跟踪仍然是TDAS地基导航的一种方案,但本文集中讨论单向测距和多卜勒跟踪的方法,具体说是: (1)正向线路信标跟踪(FLBT)——在用户星上处理由TDAS卫星连续播发的独立的导航信号; (2)正向线路定期跟踪(FLST)——在用户星上处理从TDAS正向线路定期跟踪期间所接收的导航数据; (3)反向线路定期跟踪(RLST)——在地面处理从TDAS反向线路定期接收期间用户星所产生的导航数据。比较了每种方法的系统结构以及要求,给出了导航性能评价的初步结果。该性能是用户航天器轨道、TDAS星座结构和其它参数的函数。接着将这些结果与TDAS任务模型中的精度要求相比较。最后讨论了上述各种方案对TDAS和用户航天器的影响,并指出了需进一步研究的问题。  相似文献   

14.
一简介跟踪和数据中继卫星系统(TDRSS)可以跟踪其它(用户)卫星并中继其数据。该系统的地面站可同时对K波段和S波段的19条正向(到用户星)和32条反向(来自用户星)的数据信道进行调制解调。中继卫星系统本身对数据是直通的,它与国家航空航天局之间直接传输同步信息流。四颗通信卫星都有这种数据信道,通过6个单址和3个多址天线进行。中继卫星系统每周7天、全天24小时都进行数据中继服务。用一个中继卫星的个别(井力)务最长可持续24小时;用3颗中继卫星,便可连续不断地为用户星服务。中继卫星系统地面站是一个自动化程度极高的通信电子设备的集合体。这种自动化是依赖于软件实现的,使用了一个庞大的计算机组合——9台DEC PDP11/70计算机和一台双处理机Univac 1110。该软件要完成三项主要功能:  相似文献   

15.
针对快速交会对接方案提出的航天器两圈实现变轨的可行性,使用太阳活动平静期的用户航天器四程测距数据,并结合中继卫星观测模型设计磁暴期航天器仿真测距数据,使用动力学定轨方法进行计算分析,论证了中继卫星系统对用户航天器的快速测定轨能力,解算出的航天器轨道根数精度为快速交会对接机精度分析提供了参考。  相似文献   

16.
针对快速交会对接方案提出的航天器两圈实现变轨的可行性,使用太阳活动平静期的用户航天器四程测距数据,并结合中继卫星观测模型设计磁暴期航天器仿真测距数据,使用动力学定轨方法进行计算分析,论证了中继卫星系统对用户航天器的快速测定轨能力,解算出的航天器轨道根数精度为快速交会对接机精度分析提供了参考.  相似文献   

17.
本文提出一种由三个观测方向确定卫星初轨的方法,在该法中卫星轨道直接由六个经典轨道根数表示。轨道根数的求解涉及对冗余非线性方程组的求解,结合同伦方法基本思想和冗余非线性方程组的最小二乘广义逆,本文给出了该卫星定轨的同伦求解法。初步仿真计算表明,同伦求解法较其它传统的非线性方程组求解法在全局收敛方面具有优越性,同时也就表明该定轨法是切实可行的。值得指出,本文方法很容易扩展到N(N>3)个观测方向确定卫星初轨,此时定轨精度将进一步提高。  相似文献   

18.
在九十年代及后续的时间里,跟踪与数据中继卫星系统(TDRSS)第二套地面终端站(STGT)将为NASA天基网(SN)的用户提供高可用性指令和控制能力及更高级的服务。TDRSS这一天基网(SN)将是国际空间站和其它用户航天器及其地面支持部分的主要通信关口。STGT含有一套带备份的分布式计算机系统,对带备份的射频(RF)到基带的设备链进行组配与控制,以完成用户数据的透明传输、用户星的跟踪测轨和中继卫星(TDRS)的控制和监视。STGT与位于哥达德航天中心(GSFC)的NASA测控网控制中心(NCC)有接口,通过该接口对STGT进行自动调度和控制。STGT还备有一个TDRSS本地操控中心(TOCC2)和一套与国内通信卫星(DOMSAT)的接口设备。TOCC2用于本地监视和备份控制,接口设备用于数据分发。本文专门介绍STGT,并重点描述为用户航天器进行中继业务的各部分的配置及其监控情况。  相似文献   

19.
简介跟踪和数据中继卫星系统(TDRSS)地西部分是一套高度复杂的自动通信设备,具有处理多种通信信号的能力,以满足许多用户卫星的各不相同的需求,它能同时满足28颗用户星提出的各种要求。本文补充前几篇文章,介绍了地面部分的功能及实现这些功能的硬设备。本文介绍了与本系统四颗中继卫星构成通信通道所需的七部天线。本文还介绍了正向  相似文献   

20.
太阳同步卫星和地球同步卫星运动中的几个问题   总被引:1,自引:0,他引:1  
本文讨论太阳同步卫星和地球同步卫星运动中的几个问题,即 (1)如何选择轨道参数,使卫星轨道面的变化保持与太阳运动同步以及对地面扫描的覆盖问题; (2)在“同一”定点经度部署两颗地球同步卫星的系统中卫星轨道变化与单星情况的差别以及两星相对距离的变化规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号