首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
钟兢军  阚晓旭 《推进技术》2020,41(9):1946-1957
压气机内的三维流场中存在着复杂的旋涡运动及气流分离,这些复杂的流体运动影响着压气机的高效及稳定运行,有必要了解并掌握压气机内旋涡结构的产生与发展机理。本文首先回顾了叶轮机械内经典的旋涡模型,重点综述了压气机叶栅旋涡模型的研究成果。然后,详细介绍了在矩形扩压叶栅和跨声速压气机静叶的旋涡结构方面取得的阶段性研究成果,分别讨论了三维旋涡结构的三种研究方法,验证了数值计算获取叶栅旋涡结构的可靠性,阐述了高负荷矩形扩压叶栅旋涡结构与流动损失的关联性,建立了跨声速压气机静叶三维定常旋涡结构模型,揭示了压气机静叶失速过程的涡动力学机理,并分析了非定常因素对静叶旋涡结构的影响规律。最后,针对今后在压气机旋涡结构的发展中会遇到的技术挑战和未来的发展方向做了几点展望。  相似文献   

2.
压气机叶栅的涡发生器流动控制研究   总被引:3,自引:0,他引:3  
本文通过实验和数值模拟,研究了涡发生器对压气机端壁角区流动及损失的影响,在研究中利用流向涡加强端壁角区内的低能流体与主流高能流体之间的交流,从而达到抑制分离、降低损失的目的.通过对实验与计算结果进行定性和定量分析,比较了不同条件的涡发生器作用下的叶栅性能影响.  相似文献   

3.
在不同叶顶间隙下涡轮叶栅的拓扑与旋涡结构.   总被引:1,自引:0,他引:1  
应用拓扑原理分析了叶顶相对间隙的0.023和0.036的涡轮直叶栅和正,反弯叶栅的壁面流谱,发现在两种间隙不同类叶栅的拓扑与旋涡结构在叶顶和吸力面壁角明显不同,探讨了判别形成的机理及其对能量损失的影响。  相似文献   

4.
一种叶顶叶栅结构对压气机间隙流动的影响   总被引:1,自引:0,他引:1  
为减小压气机间隙流动带来的流动损失,提出了一种新的叶顶结构,即在常规叶片叶顶上构造出由数个小叶片组成的叶栅.通过对具有该结构叶片的三维流场进行数值模拟,分析了端壁移动对压气机间隙流场的影响.结果表明:该结构明显改善了叶顶附近的流动状况,从泄压和导流两方面抑制了叶顶附近流体从压力面向吸力面的泄漏,有效削弱泄漏涡的强度,进而减小泄漏涡扩散带来的损失,提高了压气机气动性能,相比常规叶片叶栅出口总压损失系数减小达1.158%.   相似文献   

5.
高负荷压气机叶栅分离结构及其等离子体流动控制   总被引:8,自引:0,他引:8  
赵小虎  吴云  李应红  赵勤 《航空学报》2012,33(2):208-219
 为揭示高负荷压气机叶栅内部流动损失的产生机理和分布规律以及等离子体气动激励的作用机制,利用拓扑分析和数值计算方法,从计算模型的建立与验证、基准流场的分离结构和等离子体流动控制3个方面展开研究;对总压损失系数分布、拓扑结构和表面流谱与空间流线分布以及旋涡结构进行分析,并开展了激励方式的优化分析.结果表明:随着攻角的增大,固壁面拓扑结构增加了3对奇点,吸力面流向激励改变了固壁面拓扑结构.当攻角为2°时,在吸力面拓扑结构中产生了一对奇点,打断了角区分离线,并引入了一条回流再附线.叶栅流道内部有5个主要涡系,尾缘径向对涡促进流体的展向流动,并成为吸力面倒流的主要组成部分;角涡是一个独立的涡系,其强度和尺度不受等离子体气动激励的影响.吸力面流向激励可以改善叶中流场,但对角区流动作用很小;端壁横向激励可以降低角区流动损失,对叶中流场作用有限;吸力面流向与端壁横向组合激励在整个叶高范围内均可以显著抑制流动分离;端壁横向流动对角区流动分离结构的影响大于吸力面附面层的分离.吸力面流向激励的优化明显降低,而端壁横向激励和组合激励的优化保持并增强了等离子体流动的控制效果.  相似文献   

6.
高负荷轴流压气机叶栅二次流动与损失关联性探讨   总被引:1,自引:6,他引:1       下载免费PDF全文
为探讨压气机中二次流与损失生成的关联性,对一高负荷轴流压气机叶栅开展数值模拟研究。首先对叶栅流动进行定性分析,在此基础上推导定量模型估算流场中的损失源,并由此获得二次流动诱发损失的机理与影响。研究结果显示,在大部分攻角范围内,二次流诱发的损失未超过50%。相对于二次流间接作用于低速流而诱发的损失而言,其直接耗散产生的损失仅为小量;在角区失速时的详细观测也显示,通道横流的流向变化,也即二次流对低速流间接影响的变化是导致通道内损失随攻角激增的主要原因。  相似文献   

7.
扩压叶栅端壁区旋涡流动显示研究   总被引:4,自引:2,他引:4  
马宏伟  蒋浩康 《航空动力学报》1997,12(3):258-262,330
通过氢气泡流动显示,获取不同攻角、不同径向间隙下扩压叶栅端壁区内各种旋涡的发生、发展、涡-涡、涡-附面层干涉的流动图画。   相似文献   

8.
为进一步认识高负荷扩压叶栅内的流动机理和旋涡演变规律,采用经试验校核的数值方法,以具有60°折转角的NACA65-010叶型为研究对象,运用拓扑分析理论,探讨了叶栅流道内马蹄涡、通道涡、集中脱落涡和壁角涡等二次旋涡的生成、演绎与发展。分析认为,在高负荷扩压叶栅中,对流场影响最大的涡系结构为通道涡,通道涡在130%B截面转变为稳定的内旋结构,流道内的壁角涡由通道涡诱导形成,而出口角涡则是在叶片尾缘出口绕流与通道涡的综合作用下形成的,流场出口最终呈现出通道涡与集中脱落涡并存的稳定结构。最后给出了0°冲角下的三维旋涡结构示意图。  相似文献   

9.
数值研究了合成射流控制高速压气机静叶栅吸力面角区分离,对比分析了不同射流结构对叶栅内流场结构及气动性能的影响。研究结果表明:合成射流通过周期性地吹气和吸气推迟角区分离、降低总压损失,由于吹气和吸气阶段的作用效果不同,使得叶栅出口损失系数的改善效果呈现出周期性波动。合成射流对通道涡以及角区二次流的有效控制是其取得良好控制效果的关键,当冲角为2°时,局部、全叶高方案最大可使总压损失系数分别降低22.2%和23.8%。由于局部叶高方案无法控制叶展中部的流动,造成该区域的尾迹损失增大,从而导致其流动控制效果弱于全叶高方案。两种射流结构都具有良好的变工况适应特性,全叶高方案在大冲角时逐渐体现出其优势,当冲角为4°时,总压损失系数的改善幅度相比局部叶高方案提高了2.8%。   相似文献   

10.
在实际使用过程中,压气机容易由于腐蚀磨损等原因导致叶片表面粗糙度增加,这将使得整级压气机的气动性能下降。与此同时,由轮毂横向流所诱发的角区分离也将造成巨大的流动损失。为了探究叶表粗糙度变化是否会促进角区分离的产生,以及粗糙度变化对压气机内损失类型的影响,借助CFX商用软件对低雷诺数扩压叶栅展开数值计算研究。同时,还引入Gamma模型来研究粗糙度变化对转捩的影响。研究发现,叶片表面粗糙度的增加将使得分离转捩和旁路转捩加强,但对逆转捩影响较小。此外,借助损失源分析方法,将叶栅内的损失分为前缘损失、叶型摩擦损失、二次流损失和尾迹损失。结果表明,在角区分离严重且表面等效砂砾粗糙度增加到50μm时,相比于光滑情况,其总损失增加了9.6%。借助拓扑分析,可以发现随粗糙度增加,前缘分离泡不断前移,扰乱前缘部分流动,由此导致的前缘损失随粗糙度变化最为明显。  相似文献   

11.
吸力面翼刀控制压气机叶栅二次流的实验研究   总被引:4,自引:2,他引:4  
在低速风洞上通过详细测量叶栅的出口流场 ,研究了叶片吸力面上不同高度处加翼刀对压气机叶栅损失和二次流的影响。实验结果表明 ,合理地选择翼刀安装位置 ,可有效地控制压气机叶栅的二次流 ,降低叶栅的总损失。  相似文献   

12.
端壁翼刀控制压气机叶栅二次流的数值研究   总被引:3,自引:3,他引:3  
对CDA常规直叶栅和4种端壁翼刀方案下叶栅内三维粘性流场进行了数值研究。分析表明,端壁不同位置上的翼刀不同程度上都阻断了近端壁区域压力面至吸力面的二次流动,翼刀上方偏向吸力面侧有反向"翼刀涡"产生,通道涡的强度被削弱;距压力面30%节距位置为安装端壁翼刀的最佳位置,可使损失降低7%~9%。计算结果和实验结果吻合较好。   相似文献   

13.
轴流压气机转子叶尖间隙流动结构的数值研究   总被引:3,自引:0,他引:3  
张晨凯  胡骏  王志强  高翔 《航空学报》2014,35(5):1236-1245
为进一步加深对轴流压气机转子叶尖间隙内泄漏流/涡流动结构的认识,针对某台用于高压压气机低速模拟的四级重复级大尺度轴流压气机上的转子,采用定常数值方法开展了详细的研究。首先用已有的试验结果校核了计算方法的可靠性,随后研究了设计点工况下端区复杂流动结构和流动损失的机理,最后比较了无叶尖间隙和不同叶尖间隙大小的轴流压气机转子端区流动结构的差别,以及设计点和近失速情况下叶尖泄漏涡结构、泄漏流/主流交界面、端壁堵塞以及端壁损失的区别。结果表明,在62.5%间隙高度以下的叶尖区域内,从前缘叶尖间隙流出的流体会卷吸成叶尖泄漏涡,且随间隙高度的增加其占据的叶尖泄漏涡的位置由内而外;而在62.5%间隙高度以上,从转子前缘间隙内流出的流体不会卷吸成叶尖泄漏涡,随间隙高度的增加流动受叶尖泄漏涡的影响越来越小,更易出现二次及多次泄漏,且所占据的弦长范围也更宽广;设计状态下,叶尖泄漏涡在向下游发展的过程中会逐步膨胀,并与主流强烈掺混,无量纲流向涡量迅速减小,但无量纲螺旋度值显示其仍能保持集中涡的特征。  相似文献   

14.
三维扩压叶栅非定常流动机理研究的频谱分析   总被引:1,自引:0,他引:1  
计算了三维直叶栅在不同攻角、不同马赫数下的流动情况,得到流场的非定常解,并进行了频谱分析,对叶栅非定常流动的流场结构和流动机理做了初步的探讨。分析计算结果表明:在来流均匀,定常边界条件下,叶栅内流动仍然表现出强烈的非定常性。分离区和尾迹中的流动,以旋涡的有规律周期性脱落为主要的运动形式。旋涡脱落的频率,随着攻角和马赫数的变化而变化:同马赫数下,攻角越大,频率越低;同攻角下,马赫数越高,频率越高。同时,在同一工况下,旋涡频率沿叶高呈非均匀分布,叶中区域频率相对低,靠近端壁区频率相对高。   相似文献   

15.
不同周向位置端壁翼刀对压气机叶栅损失影响的实验研究   总被引:1,自引:0,他引:1  
在低速大尺寸叶栅风洞上通过详细测量叶栅流场,研究了叶栅端壁上不同周向位置处加装端壁翼刀对压气机叶栅损失和二次流的影响。实验结果表明,合理选择翼刀安装位置,可有效地控制压气机叶栅的二次流,降低叶栅的总损失。进一步对实验方案中叶栅总损失最小的翼刀位置的叶栅内流场进行了测量,分析了安装翼刀后流场内涡系结构的变化,探讨了翼刀涡的形成和发展变化。   相似文献   

16.
边界层吸气对压气机叶栅角区分离损失的控制   总被引:1,自引:0,他引:1  
压气机角区的大范围回流通常会引起叶片通道中的三维阻塞现象,并伴随有强烈的掺混流动损失。采用德国航空航天中心(DLR)开发的TRACE程序,在其推进技术研究所的高速压气机叶栅试验台(包含5个NACA65K48直叶片)上,研究了位于端壁上的边界层吸气措施——叶片弦中近尾缘吸气槽(MTE)对该直压气机叶栅通道的角区分离进行控制,减小二次流动损失,进而削弱其对总损失的影响。通过基于定常雷诺平均Navier-Stokes(RANS)方法的数值模拟研究与相应的试验研究对比,端壁边界层吸气能够较好地重新组织角区气流流动,减弱附着于叶片吸力面尾缘的集中脱落涡,使得角区分离涡强度显著降低,由此引起的二次流损失也明显降低,与无吸气状态相比最大降幅可达81.2%;在设计状态下采用吸气流量率为1%的MTE,总压损失有很大程度的降低:在数值计算中,降幅为15.2%;试验测量中为9.7%。  相似文献   

17.
现代先进轴流压气机级负荷不断提高的发展趋势导致流动分离日益严重.借助数值模拟分别对非定常射流和定常射流进行了参数优化研究.结果表明:基于射流的主动流动控制能有效弱化或消除流动分离,不同射流方式存在不同的最优射流参数(射流方向、位置、速度和频率等),这就为利用射流控制轴流压气机分离流动的工程应用奠定了一定的理论基础.  相似文献   

18.
具有叶顶间隙的涡轮正弯叶栅流场的拓扑与旋涡结构   总被引:2,自引:0,他引:2  
为进一步揭示在具有间隙的涡轮叶栅中叶片正弯降低泄漏损失的机理,采用微型束状与球头五孔测针详细测量了直叶栅和正弯叶栅间隙内和诸横截面流场听气动参数,并对壁面进行了墨迹显示。根据测量与显示结果,应用拓扑学原理分析了壁面与横截面流动的拓扑结构,推测出叶栅内流场的旋涡结构。分析结果表明,在直叶栅中存在着七条分离线与七大集中涡系,它们分别为上端壁叶顶进口吸力边与压力边马蹄涡,泄漏损失的机理,下端壁进口边马蹄  相似文献   

19.
史磊  刘波  那振喆  张国臣  李俊 《推进技术》2015,36(2):217-225
设计加工了压气机叶栅端壁试验件,安置在吸附式叶栅中间通道50%叶展处,用来研究无马蹄涡影响的端壁流场。通过油流显示方法得到了其在设计点4种抽吸流量下的近壁面流线分布。在抽吸缝所在相对弦长处,沿节距方向等距测取了8个试验件壁面静压值。应用Fine/Turbo软件包,采用全通道网格在设计点进行了数值计算,对试验件端壁流场进行补充分析,较好地解释了实验现象。研究发现,吸附式压气机原始叶栅端壁处的马蹄涡压力面分支未与叶型吸力面交汇,因此消除马蹄涡影响的近端壁油流试验件叶型表面负荷水平的提升主要来自于前段弦长范围内,在前40%轴向范围内叶型负荷平均提高了15.5%,并且叶型负荷随着抽吸流量的增加而增加,抽吸效率随着抽吸流量的增加而降低。在数值计算中,通过前缘处近壁面熵分布等值线最小值连线证实了油流实验中测得的角度θ客观上反映了前缘扰动区的作用范围。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号