首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
GNSS不同频点间的码伪距作差会引入信号的差分码偏差(DCB),包括GNSS卫星及地面接收机的DCB.本文提出一种地基GNSS接收机差分码偏差参数估算方法,首先由电离层文件参数作线性插值,计算出电离层延迟误差.之后对IGS站观测文件进行加权最小二乘法估计,得到GPS卫星和地面GNSS接收机的L1C频点和L2P频点间码偏...  相似文献   

2.
MGEX北斗差分码偏差两种精确处理方法对比分析   总被引:1,自引:1,他引:0  
差分码偏差是北斗卫星导航系统(BDS)在高精度定位和电离层建模中需精确处理的系统误差之一.利用MGEX发布的2017年全年和2018年6月的BDS卫星的差分码偏差数据,比较分析了DLR和CAS分别解算的BDS卫星差分码偏差的日解值、月平均值和稳定性的变化特性.分析结果表明,DLR与CAS估算的BDS卫星差分码偏差值差异不大,具有较好的一致性;2017年CAS估算的BDS卫星C2I-C6I差分码偏差稳定性略优于DLR,C2I-C7I差分码偏差稳定性与DLR相当,且均具有较高稳定性;2018年6月DLR C2I-C6I差分码偏差月平均值稳定性优于CAS;C2I-C7I差分码偏差的稳定性明显优于C2I-C6I差分码偏差,卫星差分码偏差月平均值稳定性优于日解值稳定性.   相似文献   

3.
传统的全球导航卫星系统(GNSS)信号模拟器通道群时延标定方法有相位翻转点法和相关峰法两种,两者均在零伪距或固定伪距的特殊仿真场景下进行测量,且在通道传输特性非理想的情况下测得的群时延均存在偏差.提出了基于闭环伪距测量的模拟器通道群时延标定方法,并设计实现了GNSS信号模拟器通道群时延标定系统.首先,采用高速直接射频采样存储系统对模拟器正常星座动态仿真场景下输出的导航信号和秒脉冲(1 PPS)信号同时进行记录.其次,使用软件接收机对信号进行捕获跟踪,利用三次样条插值判定1 PPS上升沿位置作为伪距观测历元时刻,对软件接收机的伪距观测量和模拟器仿真的伪距记录值做数据比对,得到模拟器的群时延标定值.最后,分别利用上述方法对两种商用模拟器的群时延进行了标定,实验结果表明,闭环伪距测量法有效可行,测量不确定度优于0.7 ns.   相似文献   

4.
GPS电离层反演方法研究及其在地震方面的应用   总被引:1,自引:0,他引:1  
利用地基GPS数据计算了电离层单球壳模型穿刺点上的垂向总电子含量(VTEC), 根据VTEC和卫星及测站接收机的差分码间偏差DCB的不同时变特性采用了复弧法, 将VTEC作为局部变量(每30 min 一组, 可调), DCB作为一天的全局量进行解算. 在解算的过程中, 充分考虑VTEC的空间分布特性, 利用变异函数通过Kriging插值法建立电离层VTEC的二维格网模型, 并给出了卫星和接收机的差分码间偏差DCB. 通过与IGS结果的比较, 发现其结果可靠, 且时空分辨率和稳定性都有较大提高. 同时, 基于简化的三元样条插值基函数对电离层电子密度进行三维展开, 利用乘型代数重建技术MART算法构建了同批数据的四维层析成像结果, 获得了电离层电子密 度的四维分布. 其结果与CHAMP无线电掩星结果非常一致. 利用上面两种算法又分别对2008年5月长江三角洲地区地基GPS数据进行处理, 简要分析了该时段该地区上空电离层总电子含量和电子密度的变化情况及其对汶川地震的响应.   相似文献   

5.
时间码在航空航天、金融、通信、交通和能源等领域应用广泛,定时偏差是表征时间码同步性能的重要参数。而时间码设备使用环境复杂,需长期连续加电运行,不宜拆卸。因此,需要采用现场校准技术。利用北斗共视技术,研究一种时间码现场校准方法,可远程获得精确可靠的时间参考,对常见时间码如1PPS、B(DC)码和B(AC)码等进行测量,解决时间码现场校准的难题。实验结果表明,基于该方法的现场校准装置内时基相对于UTC(BIRM)的定时偏差优于10 ns, 1PPS和B(DC)测量的扩展不确定度小于20 ns, B(AC)测量的扩展不确定度小于1.5μs。  相似文献   

6.
随着北斗卫星导航系统(BDS)的发展与完善,基于BDS的时间传递应用需求越来越迫切。简要介绍了为开展北斗时间传递研究自研的多通道多频GPS/BDS时间传递接收机BM1308-52。接收机可同时接收GPS、BDS的码信息和载波相位信息,输出GPS、BDS的CGGTTS标准共视文件和Rinex观测文件,观测时间、处理方法及数据输出格式符合国际规范。最后,利用实测数据测试了BM1308-52的性能,测试结果表明,GPS单向时间比对和零基线共视比对不确定度优于2ns,BD单向时间比对不确定度优于3ns,与国际水平相当。BM1308-52的系统稳定可靠,观测精度高,可以更好地为时间频率传递服务。  相似文献   

7.
提出了一种基于最小二乘的赤道异常区GPS-TEC与系统硬件偏差的反演方法.利用设置在福州、厦门、广州和南宁4个台站的观测数据,可以得到GPS卫星和接收机的硬件偏差以及(20°~28°N,105°~123°E)区域中48个3°×1°网格的TEC(时间分辨率为15 min).应用于2006年观测数据,得到了较稳定的系统硬件偏差,其中卫星硬件偏差值与欧洲定轨中心公布的结果接近,得到的TEC具有合理的日变化和季节变化特征.该反演方法可以应用于赤道异常区电离层的研究.   相似文献   

8.
一种数字化DS/BPSK扩频接收机   总被引:2,自引:0,他引:2  
介绍一种新型数字化DS/BPSK(Direct Spread/Binary Phase Shife Keying)扩频接收机的设计.该接收机采用专用数字相关器为核心的硬件设计,并结合数字处理算法完成扩频信号的解调.技术上采用串并组合的伪码捕获、科斯特环载波跟踪、延迟锁定环伪码跟踪等方式,可通过软件算法灵活实现.该接收机具有综合性能强,及软件接口灵活的特点,可有效地应用于基于码分多址的多目标测控系统中.  相似文献   

9.
随着北斗卫星导航系统(BDS)的发展与完善,基于BDS的时间传递应用需求越来越迫切。简要介绍了为开展北斗时间传递研究自研的多通道多频GPS/BDS时间传递接收机BM1308-52。接收机可同时接收GPS、BDS的码信息和载波相位信息,输出GPS、BDS的CGGTTS标准共视文件和Rinex观测文件,观测时间、处理方法及数据输出格式符合国际规范。最后,利用实测数据测试了BM1308-52的性能,测试结果表明,GPS单向时间比对和零基线共视比对不确定度优于2ns,BD单向时间比对不确定度优于3ns,与国际水平相当。BM1308-52的系统稳定可靠,观测精度高,可以更好地为时间频率传递服务。  相似文献   

10.
多通道GPS共视法时频传递接收机的研制   总被引:1,自引:0,他引:1  
GPS共视法是国际上流行的远距离时间频率传递技术,核心是共视法接收机。我们成功研制了多通道GPS共视法时频传递接收机系统,硬件部分主要由自主研制的高精度时间间隔计数器和Motorola生产的VPONCORE GPS引擎组成,软件符合时间频率咨询委员会(CCTF)发布的GPS共视法数据处理软件标准化指南的要求,与单通道GPS定时接收机相比,界面更友好,操作更方便,具有很强的分析处理数据功能。经测试证明多通道GPS接收机零基线共钟共视时间比对的不确定度小于4 ns(仰角40°),与国外报道基本相同。  相似文献   

11.
The total electron content (TEC) estimation by the Global Positioning System (GPS) can be seriously affected by the differential code biases (DCB), referred to as inter-frequency biases (IFB), of the satellite and receiver so that an accuracy of GPS–TEC value is dependent on the error of DCBs estimation. In this paper, we proposed the singular value decomposition (SVD) method to estimate the DCB of GPS satellites and receivers using the Korean GPS network (KGN) in South Korea. The receiver DCBs of about 49 GPS reference stations in KGN were determined for the accurate estimation of the regional ionospheric TEC. They obtained from the daily solution have large biases ranging from +5 to +27 ns for geomagnetic quiet days. The receiver DCB of SUWN reference station was compared with the estimates of IGS and JPL global ionosphere map (GIM). The results have shown comparatively good agreement at the level within 0.2 ns. After correction of receiver DCBs and knowing the satellite DCBs, the comparison between the behavior of the estimated TEC and that of GIMs was performed for consecutive three days. We showed that there is a good agreement between KASI model and GIMs.  相似文献   

12.
Triple frequency GNSS will be fully operational within the next decade, opening opportunities for new applications. Dual frequency GNSS already allow to study the ionosphere through the estimation of Total Electron Content (TEC). However, the precision is limited by the ambiguity resolution process. This paper studies a triple frequency TEC monitoring technique in which the use of Geometry-Free and Iono-Free linear combinations improves the ambiguity resolution process and therefore the precision of TEC. We have tested it on a set of triple frequency Giove-A/-B data from January and December 2008. The conclusions achieved are (1) TEC values are affected by an error of about 2–2.5 TECU produced through the ambiguity resolution process; (2) the error caused by the Geometric Free phase combination delays (hardware, multipath, noise, antenna phase center) on TEC is about 0.2 TECU; (3) the total error on TEC approximately reach 2–3 TECU.  相似文献   

13.
为研究中国陆态网区域电离层TEC在空间小尺度、高分辨率情况下的变化特性及适用精度范围,利用陆态网260个GNSS连续运行观测站数据,解算并生成2016-2017年731天陆态网区域电离层RIM格网,并进行精度验证.在同一RIM格网中,分别在经度和纬度方向上对间隔不同经纬度的TEC格网点作差分析.结果表明:陆态网区域内经度方向上TEC最大变化率和平均变化率分别为0.30TECU·(°)-1和0.11TECU·(°)-1;经度间隔1°时,TEC差值小于2TECU,且随着经度间隔的增大,其TEC差值也随之增大,并表现出一定的半年和周年变化规律;纬度方向上TEC最大变化率和平均变化率分别为1.7TECU·(°)-1和0.46TECU·(°)-1;陆态网区域内电离层TEC随纬度减小而增大,纬度间隔1°时,99.4%的TEC差值小于4TECU,且随着纬度间隔的增大,其TEC差值也随之增大,并表现出一定的半年和周年变化规律;间隔相同情况下,纬度方向上TEC的变化比经度方向上大.   相似文献   

14.
The ionosphere induces a time delay in transionospheric radio signals such as the Global Positioning System (GPS) signal. The Total Electron Content (TEC) is a key parameter in the mitigation of ionospheric effects on transionospheric signals. The delay in GPS signal induced by the ionosphere is proportional to TEC along the path from the GPS satellite to a receiver. The diurnal monthly and seasonal variations of ionospheric electron content were studied during the year 2010, a year of extreme solar minimum (F10.7 = 81 solar flux unit), with data from the GPS receiver and the Digisonde Portable Sounder (DPS) collocated at Ilorin (Geog. Lat. 8.50°N, Long. 4.50°E, dip −7.9°). The diurnal monthly variation shows steady increases in TEC and F2-layer critical frequency (foF2) from pre-dawn minimum to afternoon maximum and then decreases after sunset. TEC show significant seasonal variation during the daytime between 0900 and 1900 UT (LT = UT + 1 h) with a maximum during the March equinox (about 35 TECU) and minimum during the June solstice (about 24 TECU). The GPS-TEC and foF2 values reveal a weak seasonal anomaly and equinoctial asymmetry during the daytime. The variations observed find their explanations in the amount of solar radiation and neutral gas composition. The measured TEC and foF2 values were compared with last two versions of the International Reference Ionosphere (IRI-2007 and IRI-2012) model predictions using the NeQuick and CCIR (International Radio Consultative Committee) options respectively in the model. In general, the two models give foF2 close to the experimental values, whereas significant discrepancies are found in the predictions of TEC from the models especially during the daytime. The error in height dependent thickness parameter, daytime underestimation of equatorial drift and contributions of electrons from altitudes above 2000 km have been suggested as the possible causes.  相似文献   

15.
As an important error source in Global Navigation Satellite System (GNSS) positioning and ionospheric modeling, the differential code biases (DCB) need to be estimated accurately, e.g., the regional Quasi-Zenith satellite system (QZSS). In this paper, the DCB of QZSS is estimated by adopting the global ionospheric modeling method based on QZSS/GPS combined observations from Multi-GNSS experiment (MGEX). The performance of QZSS satellite and receiver DCB is analyzed with observations from day of year (DOY) 275–364, 2018. Good agreement between our estimated QZSS satellite DCB and the products from DLR and CAS is obtained. The bias and root mean square (RMS) of DCB are mostly within ±0.3 ns. The day-to-day fluctuation of the DCB time series is less than 0.5 ns with about 96% of the cases for all satellites. However, the receiver DCB is a little less stable than satellite DCB, and their standard deviations (STDs) are within 1.9 ns. The result shows that the stability of the receiver DCBs is not significantly related to the types of receiver or antenna.  相似文献   

16.
This paper proposes a method of real-time monitoring and modeling the ionospheric Total Electron Content (TEC) by Precise Point Positioning (PPP). Firstly, the ionospheric TEC and receiver’s Differential Code Biases (DCB) are estimated with the undifferenced raw observation in real-time, then the ionospheric TEC model is established based on the Single Layer Model (SLM) assumption and the recovered ionospheric TEC. In this study, phase observations with high precision are directly used instead of phase smoothed code observations. In addition, the DCB estimation is separated from the establishment of the ionospheric model which will limit the impacts of the SLM assumption impacts. The ionospheric model is established at every epoch for real time application. The method is validated with three different GNSS networks on a local, regional, and global basis. The results show that the method is feasible and effective, the real-time ionosphere and DCB results are very consistent with the IGS final products, with a bias of 1–2 TECU and 0.4 ns respectively.  相似文献   

17.
With 4 GPS receivers located in the equatorial anomaly region in southeast China, this paper proposes a grid-based algorithm to determine the GPS satellites and receivers biases, and at the same time to derive the total electron content (TEC) with time resolution of 15 min and spatial resolution of 1° by 3.5° in latitude and longitude. By assuming that the TEC is identical at any point within a given grid block and the biases do not vary within a day, the algorithm arranges unknown biases and TECs with slant path TEC from the 4 receivers’ observations into a set of equations. Then the instrumental biases and the TECs are determined by using the least squares fitting technique. The performance of the method is examined by applying it to the GPS receiver chain observations selected from 16 geomagnetically quiet days in four seasons of 2006. It is found that the fitting agrees with the data very well, with goodness of fit ranging from 0.452 TECU to 1.914 TECU. Having a mean of 0.9 ns, the standard deviations for most of the GPS satellite biases are less than 1.0 ns for the 16 days. The GPS receiver biases are more stable than that of the GPS satellites. The standard deviation in the 4 receiver bias is from 0.370 ns to 0.855 ns, with a mean of 0.5 ns. Moreover, the instrumental biases are highly correlated with those derived from CODE and JPL with independent methods. The typical precision of the derived TEC is 5 TECU by a conservative estimation. These results indicate that the proposed algorithm is valid and qualified for small scale GPS network.  相似文献   

18.
利用两个中纬度台站GPS观测数据提取的GPS卫星硬件延迟,分析了不同太阳活动情况下估算的硬件延迟稳定性和统计特征,结合同期电离层观测数据,研究了电离层状态对硬件延迟估算结果的影响.研究结果表明,基于太阳活动高年(2001年)GPS观测数据估算的硬件延迟稳定性要低于太阳活动低年GPS观测数据的估算结果,利用2001年GPS数据估算的卫星硬件延迟年标准偏差(RMS)平均值约为1TECU,而2009年GPS数据估算的卫星硬件延迟年标准偏差平均值约为0.8TECU.通过对2001年和2009年北京地区电离层F2层最大电子密度(NmF2)变化性分析,结合GPS硬件延迟估算方法对电离层时空变化条件的要求,认为硬件延迟稳定性与太阳活动强度的联系是由不同太阳活动条件下电离层变化的强度差异引起的.   相似文献   

19.
In this research, as part of working towards improving the IRI over equatorial region, the total electron content (TEC) derived from GPS measurements and IRI-2007 TEC predictions at Chumphon station (10.72°N, 99.37°E), Thailand, during 2004–2006 is analyzed. The seasonal variation of the IRI-2007 TEC predictions is compared with the TEC from the IRI-2007 TEC model with the option of the actual F2 plasma frequency (foF2) measurements as well as the TEC from the GPS and International GNSS service (IGS). The Chumphon station is located at the equatorial region and the low latitude of 3.22°N. For a declining phase of the solar cycle (2004–2006), the study shows that the IRI-2007 TEC underestimates the IRI-2007 TEC with the foF2 observation at the nighttime by about 5 TECU. The maximum differences are about 15 TECU during daytime and 5 TECU during nighttime. The overestimation is more evident at daytime than at nighttime. When compared in terms of the root-mean square error (RMSE), we find that the highest RMSE between GPS TEC and IRI 2007 TEC is 14.840 TECU at 1230 LT in 2004 and the lowest average between them is 1.318 TECU at 0630 LT in 2006. The noon bite-out phenomena are clearly seen in the IRI-2007 TEC with and without optional foF2 measurements, but not on the GPS TEC and IGS TEC. The IRI TEC with optional foF2 measurements gives the lowest RMSE values between IRI TEC predicted and TEC measurement. However, the TEC measurements (GPS TEC and IGS TEC) are more correct to use at Chumphon station.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号