共查询到19条相似文献,搜索用时 31 毫秒
1.
为满足搭载单频GPS接收机低轨卫星的精密定轨需求以及深化单频定轨研究,文中解决了单频星载GPS数据的周跳探测问题,并利用“海洋二号”(HY-2A)卫星及“资源三号”(ZY-3)卫星的单频星载GPS实测数据采用两种方法确定了二者的简化动力学轨道,并通过观测值残差分析、与双频精密轨道比较、激光测卫数据检核等方法对所得轨道精度进行评定。结果表明,在不考虑电离层延迟影响的情况下,HY-2A卫星定轨精度为2~3dm,ZY-3卫星为1m左右;而采用半和改正组合消除电离层延迟一阶项影响后,二者定轨精度均显著提高,HY-2A卫星三维精度提高至1dm左右,ZY-3卫星提高至1~2dm。文章的研究成果表明,搭载单频GPS接收机的低轨卫星也可获得厘米级的定轨精度。 相似文献
2.
利用FY-3C极轨卫星提供的2014年6月至2015年5月的GPS无线电掩星数据,统计分析了全球范围内抽样频率为50 Hz的C/A码SNR扰动情况,进而对偶发E层进行了研究.结果表明:偶发E层在夏季半球中纬地区的扰动强度远远大于冬季半球同一纬度地区的扰动强度,偶发E层在纬度40°附近扰动明显增强;在E层100 km高度附近,Es层在10:00 LT和22:00 LT达到峰值;Es层在夏季半球的出现率明显高于冬季半球;FY-3C卫星的掩星观测结果与COSMIC系统的观测结果较一致,可以利用FY-3C卫星的掩星数据研究电离层偶发E层等的变化. 相似文献
3.
4.
5.
6.
传统动力学定轨法受制于动力学模型精度,传统几何定轨法精度受限,只能达到亚米级,而基于精密单点定位(PPP)模式的几何定轨法一般采用浮点解,定轨精度及可靠性较基于双差模式的相对定位较差。为提高PPP模式低轨定轨的定位性能,利用中国区域内外的IGS测站计算出当前所有卫星的宽巷和窄巷相位小数偏差产品,对经过中国大陆区域上空的国产低轨卫星海洋二号(HY-2)和资源三号 (ZY-3) 卫星进行固定模糊度PPP的定轨解算,与事后精密轨道结果进行比较,分析其外符合精度。结果表明:仅利用约10min弧段的HY-2和ZY-3卫星数据,切向与径向的定轨精度可达2cm左右,法向为5cm左右,较浮点解定轨精度大幅提升。基于固定模糊度PPP的定轨方法能够满足厘米级的实时精密定轨。 相似文献
7.
QX-1 GNOS M是首台在轨实现北斗、GPS和Galileo三系统兼容的小型商业化全球导航卫星掩星探测仪. 2021年10月14日18:51 LT, 气象一号(QX-1)卫星发射并入轨. 自发射以来, 该卫星已收集大量观测数据. 基于QX-1 GNOS M的结构组成及性能, 统计分析了2022年8月17日全天的掩星事件及其全球分布情况. 通过将8月17日至9月3日的掩星数据与NCEP再分析模式对比, 评估QX-1掩星事件的探测穿透深度和折射率精度, 同时检验Galileo掩星数据的可靠性和一致性. 初步分析结果表明, QX-1 GNOS M在实现三系统兼容后, 掩星事件数量相较于仅使用GPS系统的情况增加了约1.5倍. 这一结果进一步证明, 不同全球导航卫星系统(GNSS)所提供的掩星数据在精度上具有一致性. 此外研究显示, 在多系统兼容的背景下, QX-1 GNOS M能够提供更为丰富和精确的气象数据. 相似文献
8.
在中国火星探测萤火一号(YH-1)计划中, 包括了地基掩星观测反演火星大气的科研任务. 观测资料整理是反演流程的第一步. 本文描述了地基火星大气掩星观测处理软件系统的观测数据流程和观测资料整理模块,并详细介绍了观测资料整理模块的结构和功能, 其中包括时间系统转换、历表插值、坐标系变换、信号时延改正以及掩星平面建立. 利用行星数据系统公布的火星快车无线电科学数据和由SPICE得到的地球、火星历表以及火星快车的轨道数据, 结合本文的算法, 得到了一些实验结果. 相似文献
9.
针对风云四号同步卫星的精密定轨和精度评估需求,首先利用地面光学测角数据对FY-4A卫星进行精密定轨,定轨后方位角和高度角的残差rms分别为0.25"和0.45"。与基于测距数据的轨道相比,位置精度在有测角数据的弧段内小于50m。进一步联合测角数据和测距数据对FY-4A卫星进行联合定轨,定轨后轨道重叠精度优于15m。利用联合定轨结果评估了基于测距数据的实时轨道产品精度,可以明显发现轨道精度随着测距数据的积累而逐步提高。 相似文献
10.
利用高精度和高垂直分辨率的COSMIC掩星观测资料, 详细深入分析了2007年冬---2008年春平流层爆发性增温(SSW)期间10~60 km高度范围内大气的变化特性, 尤其是上平流层和低中间层大气的变化特性. 结果表明, 在SSW过程中, 温度场、风场和剩余环流都发生了明显的变化. 根据温度在主增温前和主增温盛期的变化特性, 在水平方向, 大约以55ºN为界, 在垂直方向, 大约以42 km为界, 可以将温度场在纬度-高度的分布分为4个区域: 高纬下层增温区, 增温幅度约高达25 K; 高纬上层降温区, 降温幅度约达30,K; 中纬下层降温区, 降温幅度约为几K; 中纬上层增温区, 增温也约为几K. SSW期间上下层大气纬向风场的变化规律基本相同. 在纬度方向以45ºN为界, 45ºN以北地区的西风减弱东风增强, 风场变化高达50 m/s; 45ºN以南地区西风增强东风减弱, 变化幅度比较小, 约10 m/s. 在2008年1月下旬到2月底, 大气温度和纬向风有明显的振荡现象, 周期约为12天. 剩余环流的环流圈在SSW期间会发生反转, 由此也表明, SSW期间大气中物质的输运方向也会发生改变. 相似文献
11.
R. Govind F.G. Lemoine J.J. Valette D. Chinn N. Zelensky 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
Geoscience Australia contributed a multi-satellite, multi-year weekly time series to the International DORIS Service combined submission for the construction of International Terrestrial Reference Frame 2008 (ITRF2008). This contributing solution was extended to a study of the capability of DORIS to dynamically estimate the variation in the geocentre location. Two solutions, comprising different constraint configurations of the tracking network, were undertaken. The respective DORIS satellite orbit solutions (SPOT-2, SPOT-4, SPOT-5 and Envisat) were verified and validated by comparison with those produced at the Goddard Space Flight Center (GSFC), DORIS Analysis Centre, for computational consistency and standards. In addition, in the case of Envisat, the trajectories from the GA determined SLR and DORIS orbits were compared. The results for weekly dynamic geocentre estimates from the two constraint configurations were benchmarked against the geometric geocentre estimates from the IDS-2 combined solution. This established that DORIS is capable of determining the dynamic geocentre variation by estimating the degree one spherical harmonic coefficients of the Earth’s gravity potential. It was established that constrained configurations produced similar results for the geocentre location and consequently similar annual amplitudes. For the minimally constrained configuration Greenbelt–Kitab, the mean of the uncertainties of the geocentre location were 2.3, 2.3 and 7.6 mm and RMS of the mean uncertainties were 1.9, 1.2 and 3.5 mm for the X, Y and Z components, respectively. For GA_IDS-2_Datum constrained configuration, the mean of the uncertainties of the geocentre location were 1.7, 1.7 and 6.2 mm and RMS of the mean uncertainties were 0.9, 0.7 and 2.9 mm for the X, Y and Z components, respectively. The mean of the differences of the two DORIS dynamic geocentre solutions with respect to the IDS-2 combination were 1.6, 4.0 and 5.1 mm with an RMS of the mean 21.2, 14.0 and 31.5 mm for the Greenbelt–Kitab configuration and 4.1, 3.9 and 4.3 mm with an RMS 8.1, 9.0 and 28.6 mm for the GA_IDS-2_Datum constraint configuration. The annual amplitudes for each component were estimated to be 5.3, 10.8 and 11.0 mm for the Greenbelt–Kitab configuration and 5.3, 9.3 and 9.4 mm for the GA_IDS-2_Datum constraint configuration. The two DORIS determined dynamic geocentre solutions were compared to the SLR determined dynamic solution (which was determined from the same process of the GA contribution to the ITRF2008 ILRS combination) gave mean differences of 3.3, −4.7 and 2.5 mm with an RMS of 20.7, 17.5 and 28.0 mm for the X, Y and Z components, respectively for the Greenbelt–Kitab configuration and 1.1, −5.4 and 4.4 mm with an RMS of 9.7, 13.3 and 24.9 mm for the GA_IDS-2_Datum configuration. The larger variability is reflected in the respective amplitudes. As a comparison, the annual amplitudes of the SLR determined dynamic geocentre are 0.9, 1.0 and 6.8 mm in the X, Y and Z components. The results from this study indicate that there is potential to achieve precise dynamically determined geocentre from DORIS. 相似文献
12.
Jianguo Yan Fei Li Jingsong Ping James M. Dohm Yuji Harada Zhen Zhong 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
An improvement to the Martian gravity field may be achieved by means of future orbiting spacecraft with small eccentricity and low altitude exemplified through a newly proposed mission design that may be tested in upcoming reconnaissance of Mars. Here, the near equatorial orbital character (with an inclination approximating 10°, eccentricity as 0.01 and semi-major axis as 4000 km) is considered, and its contribution to Martian gravity field solution is analyzed by comparing it with a hypothetical polar circular orbiter. The solution models are evaluated in terms of the following viewpoints: power spectra of gravity field coefficients, correlations of low degree zonal coefficients, precise orbit determination, and error distribution of both Mars free air gravity anomaly and areoid. At the same time, the contributions of the near equatorial orbiters in low degree zonal coefficients time variations are also considered. The present results show that the near equatorial orbiter allows us to improve the accuracy of the Martian gravity field solution, decrease correlation of low degree zonal coefficients, retrieve much better time variable information of low degree zonal coefficients, improve precise orbit determination, and provide more accurate Mars free air gravity anomaly and areoid around the equatorial region. 相似文献
13.
K. Le Bail F.G. Lemoine D.S. Chinn 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
The NASA GSFC DORIS analysis center has provided weekly DORIS solutions from November 1992 to January 2009 (839 SINEX files) of station positions and Earth Orientation Parameters for inclusion in the DORIS contribution to ITRF2008. The NASA GSFC GEODYN orbit determination software was used to process the orbits and produce the normal equations. The weekly SINEX gscwd10 submissions included DORIS data from Envisat, TOPEX/Poseidon, SPOT-2, SPOT-3, SPOT-4, SPOT-5. The orbits were mostly seven days in length (except for weeks with data gaps or maneuvers). The processing used the GRACE-derived EIGEN-GL04S1 gravity model, updated modeling for time-variable gravity, the GOT4.7 ocean tide model and tuned satellite-specific macromodels for SPOT-2, SPOT-3, SPOT-4, SPOT-5 and TOPEX/Poseidon. The University College London (UCL) radiation pressure model for Envisat improves nonconservative force modeling for this satellite, reducing the median residual empirical daily along-track accelerations from 3.75 × 10−9 m/s2 with the a priori macromodel to 0.99 × 10−9 m/s2 with the UCL model. For the SPOT and Envisat DORIS satellite orbits from 2003 to 2008, we obtain average RMS overlaps of 0.8–0.9 cm in the radial direction, 2.1–3.4 cm cross-track, and 1.7–2.3 cm along-track. The RMS orbit differences between Envisat DORIS-only and SLR & DORIS orbits are 1.1 cm radially, 6.4 cm along-track and 3.7 cm cross-track and are characterized by systematic along-track mean offsets due to the Envisat DORIS system time bias of ±5–10 μs. We obtain a good agreement between the geometrically-determined geocenter parameters and geocenter parameters determined dynamically from analysis of the degree one terms of the geopotential. The intrinsic RMS weekly position repeatability with respect to the IDS-3 combination ranges from 2.5 to 3.0 cm in 1993–1994 to 1.5 cm in 2007–2008. 相似文献
14.
P. Yaya C. Tourain 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
Among the factors which may disrupt the DORIS measurements quality, the ground antennas environment is of high importance. For a set of 15 selected DORIS beacon, the differences between the effective and theoretical power received on-board the satellites (SPOT-5 and Envisat) have been analyzed in terms of spatial direction around the antenna. Such antenna maps have also been established regarding the Doppler residuals of the least-square precise orbit adjustment. Thanks to 360° views from the antennas and aerial views of the sites, the impact of the signal obstructions (trees, roofs, antennas …) on power attenuation and Doppler residuals is discussed. Depending on the nature of the obstructed object, the attenuation level can reach more than 5 dB, and the residual RMS of the orbit adjustment may be doubled from the nominal value, reaching 1 mm/s locally. The nature of the ground at the foot of the antennas has been correlated to DORIS signal quality at high elevation: reflections on flat surfaces (e.g. roofs) affect the signal more significantly than reflections on natural ground (e.g. soil). In particular, a modeling of the multipath phenomenon affecting Fairbanks site has been established and fits remarkably with the observations. Finally, an evaluation of the direct impact of obstructing objects on the orbit has also been performed. The example of a scaffolding at Kauai site displays a few millimeters error in the along-track position of the satellite. 相似文献
15.
C.J. Rodriguez-Solano U. HugentoblerP. Steigenberger 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
One of the major uncertainty sources affecting Global Positioning System (GPS) satellite orbits is the direct solar radiation pressure. In this paper a new model for the solar radiation pressure on GPS satellites is presented that is based on a box-wing satellite model, and assumes nominal attitude. The box-wing model is based on the physical interaction between solar radiation and satellite surfaces, and can be adjusted to fit the GPS tracking data. 相似文献
16.
17.
H. Bock A. Jäggi R. Dach S. Schaer G. Beutler 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
The determination of high-precision orbits for Low Earth Orbiting (LEO) satellites (e.g., CHAMP, GRACE, MetOp-A) is based on dual-frequency tracking data from on-board GPS (Global Positioning System) receivers. The two frequencies allow it to eliminate the first order ionosphere effects. Data screening and precise orbit determination (POD) procedures are optimized under the assumption of the availability of two frequencies. 相似文献
18.
Pascal Willis Hervé Fagard Pascale Ferrage Frank G. Lemoine Carey E. Noll Ron Noomen Michiel Otten John C. Ries Markus Rothacher Laurent Soudarin Gilles Tavernier Jean-Jacques Valette 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
DORIS is one of the four space-geodetic techniques participating in the Global Geodetic Observing System (GGOS), particularly to maintain and disseminate the Terrestrial Reference Frame as determined by International Earth rotation and Reference frame Service (IERS). A few years ago, under the umbrella of the International Association of Geodesy, a DORIS International Service (IDS) was created in order to foster international cooperation and to provide new scientific products. This paper addresses the organizational aspects of the IDS and presents some recent DORIS scientific results. It is for the first time that, in preparation of the ITRF2008, seven Analysis Centers (AC’s) contributed to derive long-term time series of DORIS stations positions. These solutions were then combined into a homogeneous time series IDS-2 for which a precision of less than 10 mm was obtained. Orbit comparisons between the various AC’s showed an excellent agreement in the radial component, both for the SPOT satellites (e.g. 0.5–2.1 cm RMS for SPOT-2) and Envisat (0.9–2.1 cm RMS), using different software packages, models, corrections and analysis strategies. There is now a wide international participation within IDS that should lead to future improvements in DORIS analysis strategies and DORIS-derived geodetic products. 相似文献
19.
以中国首次小行星探测任务为背景,根据星载相机获取的光学影像构造三种观测量,分别为小行星相对于航天器的高度角和方位角、赤经赤纬以及探测器与行星/小行星之间的夹角,分析了其在探测器定轨中的作用。仿真定轨结果表明,观测时长为100 h,探测器三轴位置误差小于50 km,满足工程上对巡航段的轨道精度要求,但x和y方向的位置和速度分量具有较强自相关性。此外还发现,使用单一观测数据类型比联合观测量的定轨精度低3~4个量级,第三类观测量相对于其他两类观测量在定轨精度方面具有显著作用,这表明在2016HO3探测中,利用太阳系大天体的位置信息有助于约束探测器轨道,提高探测器的定轨精度。 相似文献