首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
大气重力波是临近空间环境主要大气波动之一,对全球环流具有重要影响。卫星上搭载的临边探测器能够探测临近空间大气温度,可用于临近空间大气重力波研究。利用2012-2014年Aura的微波临边探测器(MLS)和TIMED的红外临边探测器(SABER)的探测数据,对20~50 km高度的大气重力波扰动分布特征开展了分析研究,两种观测重力波活动基本一致,重力波随季节、纬度及高度的变化显著。冬季半球高纬度重力波扰动较强,赤道和夏季半球近赤道地区上空也存在明显重力波活动区域,夏季半球高纬度重力波扰动最弱。重力波扰动强度随高度增加。TIMED/SABER重力波扰动强度数值比 Aura/MLS略强。   相似文献   

2.
利用瑞利激光雷达观测数据,分析了北京地区35~70km高度范围内大气温度和重力波活动的季节变化.发现北京地区30~70km高度范围内的大气温度有明显的年周期变化:平流层顶最高温度出现在6,7月份,大约为270K;中间层70km高度最低温度也出现在6,7月份,大约为200K.以2014年10月14日晚数据为例,分析重力波势能密度,发现50km以下重力波势能存在耗散,而在50km以上重力波近乎无耗散地向上传播.通过对比35~50km高度范围内的平均势能密度,对北京地区重力波活动强弱的季节变化进行了研究.研究结果表明,北京上空重力波活动强度具有明显的年周期变化,冬季平均势能密度为18J·kg-1,夏季为8J·kg-1,且冬季重力波活动强度约为夏季的两倍.此外,还分析了春夏秋冬四个季节重力波势能密度随高度的变化.结果表明,不同季节和不同高度的重力波势能密度不同.   相似文献   

3.
从中国科学院武汉物理与数学研究所钠荧光激光雷达自1999年至今的观测数据中选取了分布于全年26天的数据进行重力波活动的分析研究.统计结果表明,武汉中层顶区的重力波活动非常频繁:26天总观测时间累计约为185.5 h,总共观测到124个重力波活动,平均发生频度为每小时0.7个波,且波的出现频度与地方时有一定关系.这些波的垂直波长主要分布在3-7km,垂直相速主要位于0.1-0.5 m/s.与国外报道的结果相比较,波长数值与分布较为一致,但相速明显较低.武汉中层顶区重力波活动的另一特点是多波过程很频繁,多、单波过程的出现比例约为3:2.利用钠层相对密度扰动时空图方法,给出了武汉中层顶区重力波传播和破碎现象的典型结果.还利用单色波模型对部分钠层数据进行了单色波相关参数的提取.   相似文献   

4.
利用武汉中心气象台(30.5°N,114.4°E)无线电探空仪在2001年1月到2003年12月之间的观测数据,研究了武汉上空1-9km和14-25km高度范围内惯性重力波参数的变化特征.数据分析结果表明,重力波活动存在明显的季节变化,冬季较频繁,夏季活动较弱,与急流强度的季节变化一致,这意味着重力波的激发与背景风密切相关.矢端曲线分析显示1-9km范围内能量向上传播和向下传播的波的比例大致相同,而14-25km范围内绝大部分波能量向上传播,这与最大急流强度的高度相对应;进一步分析表明,夏天14-25km范围内波几乎全向上传播,而冬天则有相当一部分波向下传播,这可能是反射引起的.重力波的本征频率集中在1-3倍的惯性频率之间,水平波长约数百公里;1-9 km范围内垂直波长集中在3-3.5 km,14-25 km高度内则集中在4.5-5.5 km.   相似文献   

5.
急流与低层大气重力波能量的相关性研究   总被引:1,自引:1,他引:1  
李伟  易帆 《空间科学学报》2011,31(3):311-317
通过分析武汉(30.5oN, 114oE)上空2000至2004年的Radiosonde常规观测数据, 对当地对流层(1~10 km)与低平流层(18~25km)的某些惯性重力波特征进行了研究, 发现重力波能量与急流强度变化之间存在显著的相关. 同时分析了海口(20oN, 114oE)(2000至2004年)、北京(40oN, 116oE)(2001年12月至2003年2 月)的Radiosonde观测数据并进行了比较, 发现较高纬度地区的相关性明显大于低纬度地区. 通过对武汉地区2006年1月5天Radiosonde加密观测数据的分析, 讨论了重力波动能与势能的高度变化, 进一步发现纬向风的垂直剪切与急流中心的分布分别与重力波势能和动能的强弱分布相对应.   相似文献   

6.
内重力波传播的3维传输函数模式研究   总被引:2,自引:2,他引:0  
在考虑背景风场及大气耗散的条件下,建立了3维内重力波传输函数数值模式.分析了300 km高度3维传输函数在频率波数域的特性,并以近地面单位脉冲点源为激发源,得到了内重力波在3维空间中的时空分布.讨论了不同时空尺度地面方波源激发的内重力波在电离层高度的能量分布特征.结果表明,(1)对内重力波而言,背景大气相当于一个带通滤波器,只有波动周期和波长分别在15~30 min和200~400 km之间的重力波扰动最容易上传到300km高度;(2)在背景风场的作用下水平面上以同心圆扩散的波阵面以及垂直方向上成漏斗状的波阵面发生了变形,并且逆风方向比顺风方向更有利于声重力波由对流层向电离层高度传播;(3)300km高度对时间尺度和空间尺度分别在20~30 min和150~250 km之间的地面方波源响应的总能量最强.   相似文献   

7.
重力波波包相互作用时空演变的数值研究   总被引:2,自引:2,他引:0       下载免费PDF全文
本文设计了一种研究二维空间中重力波波包共振相互作用演变的数值模式.利用此模式获得二个大振幅重力波波包通过碰撞而发生的完整的相互作用过程.数值结果表明,能量上行重力波可以通过波-波相互作用激发能量下行重力波;在相互作用的时空演变过程中,3个波包的能量收支情况和相互作用的强度具有局地性;由于考虑了空间传播效应,相互作用过程不再具有周期性,而是出现一个具有不同物理含义的相互作用特征时间,这个新的相互作用特征时间和相互作用最终的发展程度不仅由相互作用系数和初始波包振幅决定,还受到波包空间尺度和波包群速度的相对大小控制.   相似文献   

8.
武汉MST雷达是中国子午工程建设的两台中高层大气无线电探测雷达之一.该雷达探测频率在VHF频段,雷达回波在低平流层和对流层上部具有角谱特性,可为研究大气动态稳定性提供有效技术手段.本文利用武汉MST雷达2016年4月17日冷锋活动期间及平静天气的角谱实验数据,从雷达回波特性变化、风场空间分布、湍流生成机制以及内重力波影响四个方面分析并解释了MST雷达对流层顶上部区域出现持续异常强回波带的成因.分析结果表明,对流层冷锋的强对流作用诱发内重力波,内重力波向上传播至低平流层后受增强的剪切急流影响发生耗散甚至破碎,激励了长时间跨度的K-H不稳定性,进而导致水平反射层结构发生扰动生成湍流,使得雷达回波结构发生变化.   相似文献   

9.
利用激光雷达对北京地区上空Na层进行持续观测,通过连续三年累积的夜间观测数据对北京地区重力波活动及其波谱进行研究.根据重力波的线性理论计算,得到北京地区上空的大气密度扰动规律、空间功率谱和时间频率谱.通过选择重力波波长在1~8 km,具有特定波长以及特定周期为60,45,25 min的重力波活动辅助研究重力波的季节变化规律,结果表明北京地区重力波大气密度扰动具有夏季大、冬季小的活动规律.结合波源与背景风场的季节性变化规律,分析得出北京上空重力波活动季节性变化的主要原因为青藏高原地形和对流因素与我国北方地区季节性背景风场共同作用的结果.  相似文献   

10.
在弱非线性理论基础上,将三维大气中行星波和惯性重力波从原始非弹性近似方程中分离出来,讨论了典型的2天行星波与惯性重力内波的非线性相互作用过程.从共振曲面和参量不稳定增长率来看,行星波倾向于与空间尺度较大的惯性重力波发生相互作用.利用潮汐波的等价重力波假设,讨论了2天行星波与半日潮及9.6h惯性重力波的相互作用,三波相互作用时能量守恒.非线性相互作用使2天波和潮汐波的波幅受到长期调制.   相似文献   

11.
The deviation of the IRI estimates of the monthly mean foF2 in the low mid latitude of 95°E–130°E longitude sector is investigated using simultaneous ground measurements at four stations during 2010–2014. The stations form two conjugate pairs of the same geo-magnetic latitude at two fixed longitudes enabling direct longitudinal and hemispheric comparison. The temporal, spatial, seasonal and solar activity variations of the deviations are discussed with reference to the longitudinal density variation in the transition region between low and midlatitudes. Cases of underestimation/overestimation as well as good estimate are noted. Underestimation (overestimation) in the daytime and overestimation (underestimation) in the nighttime of 95°E (130°E) are common. The longitudinal difference in the measurements suggests negative (positive) foF2 gradient from west to east in daytime (nighttime). In contrast, the IRI predicts flatter or increasing longitudinal profiles from 95°E to 130°E. The local time and longitudinal variation of the IRI deviations can be attributed to the combined role of the longitudinal EIA structure as well as midlatitude zonal wind-magnetic declination effect. The station/season independent deviations relate the role of solar activity representation in the IRI. These deviations may be attributed to the weak IRI response to rapid solar flux fluctuations.  相似文献   

12.
Ionospheric perturbations in possible association with a major earthquake (EQ) (M?=?8.5) which occurred in India-Oceania region are investigated by monitoring subionospheric propagation of VLF signals transmitted from the NWC transmitter (F?=?19.8?kHz), Australia to a receiving station at Varanasi (geographic lat. 25.3°N, long 82.99°E), India. The EQ occurred on 11 April 2012 at 08:38:35?h UT (magnitude?≈?8.5, depth?=?10?km, and lat.?=?2.3°N, long.?=?93.0°E). A significant increase of few days before the EQ has been observed by using the VLF nighttime amplitude fluctuation method (fixed frequency transmitter signal). The analysis of total electron contents (TEC) derived from the global positioning system (GPS) at three different stations namely, Hyderabad (latitude 17.38°N, longitude 78.48°E), Singapore (latitude 1.37°N, longitude 103.84°E) and Port Blair (latitude 11.62°N, longitude 92.72°E) due to this EQ has also been presented. Significant perturbation in TEC data (enhancements and depletion) is noted before and after the main shock of the EQ. The possible mechanisms behind these perturbations due to EQ have also been discussed.  相似文献   

13.
Spatial properties of an additional ionization layer in the topside ionosphere were investigated using Intercosmos-19 satellite ionograms. The data under analysis were choosen for equinoctial conditions of the high solar activity period (1979–1981). The F3 layer was detected in a narrow longitude sectors (about 60°) between the equatorial anomaly crests. Its intensity has a maximum just above the equator and decreases poleward within ±10° dip. A nighttime F3 layer was observed as well as the daytime events.  相似文献   

14.
Complex electrodynamic processes over the low latitude region often result in post sunset plasma density irregularities which degrade satellite communication and navigation. In order to forecast the density irregularities, their occurrence time, duration and location need to be quantified. Data from the Communication/Navigation Outage Forecasting System (C/NOFS) satellite was used to characterize the low latitude ion density irregularities from 2011 to 2013. This was supported by ground based data from the SCIntillation Network Decision Aid (SCINDA) receivers at Makerere (Geographic coordinate 32.6°E, 0.3°N, and dip latitude ?9.3°N) and Nairobi (Geographic coordinate 36.8°E, ?1.3°N, and dip latitude ?10.8°N). The results show that irregularities in ion density have a daily pattern with peaks from 20:00 to 24:00 Local Time (LT). Scintillation activity at L band and VHF over East Africa peaked in 2011 and 2012 from 20:00 to 24:00 LT, though in many cases scintillation at VHF persisted longer than that at L band. A longitudinal pattern in ion density irregularity occurrence was observed with peaks over 135–180°E and 270–300°E. The likelihood of ion density irregularity occurrence decreased with increasing altitude. Analysis of C/NOFS zonal ion drift velocities showed that the largest nighttime and daytime drifts were in 270–300°E and 300–330°E longitude regions respectively. Zonal irregularity drift velocities over East Africa were for the first time estimated from L-band scintillation indices. The results show that the velocity of plasma density irregularities in 2011 and 2012 varied daily, and hourly in the range of 50–150 m s?1. The zonal drift velocity estimates from the L-band scintillation indices had good positive correlation with the zonal drift velocities derived from VHF receivers by the spaced receiver technique.  相似文献   

15.
For the first time a comprehensive pattern of the longitudinal effect of the ionospheric trough position was obtained. We present new results with longitudinal variations of the winter trough position as a function of geomagnetic latitude for both hemispheres and conditions of high and low solar activity and all local time hours. We used a large observational data set obtained onboard the Kosmos-900, Interkosmos-19 and CHAMP satellites for quiet geomagnetic conditions. We found that a magnitude of the trough position longitudinal effect averaged for a fixed local time is greater in the daytime (6–8°) than in the nighttime (3–5°). The longitudinal effect magnitude reaches its maximum (16°) in the morning (at 08 LT) in the Southern hemisphere at high solar activity. But on certain days at any solar activity the longitudinal effect magnitude can reach 9–10° even at night. The shape of the longitudinal effect was found to differ significantly in two hemispheres. In the Northern hemisphere the trough is usually closest to the pole in the eastern (American) longitudinal sector, and in the Southern hemisphere the trough is closest in the western (Eurasian) longitudinal sector. The magnitude and shape of the longitudinal effect is also different during low and high solar activity. The Global Self-consistent Model of the Thermosphere, Ionosphere, and Protonosphere (GSM TIP) simulations demonstrate that during low solar activity, the longitudinal variations of the daytime trough position is mainly determined by longitudinal variations of the ionization function, formed due to the longitudinal variations in the solar zenith angle and the atomic oxygen density distribution. The longitudinal variations of the nighttime trough position is formed by the longitudinal variations in ionization of precipitating auroral particles, neutral atmosphere composition, and electric field.  相似文献   

16.
In this research, it is presented the daytime amplitude scintillations recorded at VHF frequency (244 MHz) at an Indian low-latitude station, Waltair (17.7°N, 83.3°E) during seven continuous years (1997–2003). Contrary to the nighttime scintillation seasonal trends, the occurrence of daytime scintillations maximizes during summer followed by winter and the equinox seasons. The fade depths, scintillation indices and the patch durations of daytime scintillations are meager when compared with their nighttime counterparts. A co-located digital high frequency (HF) ionosonde radar confirms the presence of sporadic (Es) layers when daytime scintillations are observed. The presence of daytime scintillations is evident when the critical frequency of the Es-layer (foEs) is ≥4 MHz and Es-layers are characterized by a highly diffuse range spread Es echoes as can be seen on ionograms. It is surmised that the gradient drift instability (GDI) seems to be the possible mechanism for the generation of these daytime scintillations. It is quite likely that the spread Es-F-layer coupling is done through polarization electric fields (Ep) that develop inside the destabilized patches of sporadic E layers, which are mapped up to the F region along the field lines as to initiate the daytime scintillations through the GDI mechanism. Further, the presence of additional stratification of ionosphere F-layer, popularly known as the F3-layer, is observed on ionograms once the Es-layers and daytime scintillations are ceased.  相似文献   

17.
The United States supported the First GARP Global Experiment (FGGE) by the use of three geostationary satellites: GOES-East, located at 75°W longitude, GOES-West at 135°W longitude, and, through a special cooperative effort by the National Oceanic and Atmospheric Administration, the National Aeronautics and Space Administration, and the European Space Agency, GOES-Indian Ocean at 58°E longitude. During the FGGE Operational Year, the GOES-East coverage was provided, in turn, by GOES-2, SMS-1, and SMS-2. The GOES-West coverage was provided by GOES-3, and GOES-1 served at the GOES-Indian Ocean location. Satellite and instrument performance was generally satisfactory during that period except for the loss of infrared data from the Indian Ocean GOES for an aggregate of 31 days due to intermittent operation of the sensor. From the GOES-East and GOES-West data, the National Environmental Satellite Service produced cloud motion vectors for 0000, 1200, and 1800 GMT daily, numbering in total about 1400 vectors per day. High resolution wind vectors at the rate of somewhat under 3000 daily were derived from the data from all three satellites in the tropical zone bounded by 15°N and 15°S latitude by the University of Wisconsin. In addition to their contributions to the FGGE research data sets, these three satellites provided other real-time benefits and services.  相似文献   

18.
Analysis of the seasonal, hemispheric and latitudinal variation of the ionospheric F2 peak during periods of disturbed geomagnetic conditions in 2011, a year of low solar activity, had been studied using hourly data obtained from low- and mid-latitude ionosonde stations. Our results showed an enhancement in F2-layer maximum electron density (NmF2) at daytime over low latitudes. For the mid-latitude stations, NmF2 depletion pre-dominates the daytime and overturned at nighttime. In general, the variation in terms of magnitude is higher in the low-latitude than at mid-latitude. The nighttime decrease in NmF2 is accompanied by a corresponding F2 peak height (hmF2) increase and overturned at daytime. The hmF2 response during the equinoctial months is lower than the solstices. NmF2 shows distinct seasonal, hemispheric and latitudinal dependence in its response. Appearance of a significant ionospheric effect in southern hemisphere is higher than in the northern hemisphere, and is more pronounced in the equinoxes at low latitudes. At mid-latitudes, the ionospheric effect is insignificant at both hemispheres. A negative ionospheric response dominates the whole seasons at the mid-latitude except for March equinox. The reverse is the case for the hmF2 observation. The amplitudes of both the NmF2 and hmF2 increase with increasing latitude and maximize in the southern hemisphere in terms of longitude.  相似文献   

19.
This study presents an analysis of the observed north-south asymmetry of the range spread F (RSF) intensity at the low latitude region during an equinoctial month of different solar epochs (2002, 2015 and 2017). The ionospheric parameters were obtained during geomagnetic quiet days from four digisonde stations located along the Brazilian longitude, which include a dip equator station (Sao Luiz (SL: 2.33 S, 44.2 W)), conjugate stations (Campo Grande (CG: 20.5°S, 55°W) and Boa Vista (BV: 2.8°N, 60.7°W)) and another low latitude station (Cachoeira Paulista (CP: 22.7°S, 45°W)). The results highlight the competing effect of the post-sunset electric field strength and the trans-equatorial wind on the latitudinal distribution of the irregularity intensity at both hemispheres under varying background ionospheric condition. The RSF intensity was seen to reduce as the solar flux index decreased and the latitudinal peak shifted closer to the dip equator. This was dependent on the variation of the field line mapped irregularity spectrum and the density gradient. Likewise, the north-south asymmetry in the irregularity occurrence was seen to become more significant as a denser ionosphere was observed at the hemisphere with the equatorward meridional wind. This has further proven that the non-linear cascading of the plasma irregularity across the low latitude region is strongly influenced by the local electric field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号