首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
沈洋  刘凯欣  陈璞  张德良 《航空学报》2019,40(5):122591-122591
采用改进的时空守恒元/解元(CE/SE)格式和新型二步化学反应模型,对小扰动情况下方管通道中的氢氧气相爆轰传播过程进行了数值模拟,对不同截面尺寸和两种扰动模式下的爆轰波三波线结构进行了详细计算和分析。数值模拟花费了相对较少的计算代价,清晰地得到了方形截面通道中3种相对稳定的爆轰波传播结构,即直角模式、对角模式和螺旋模式。随着截面尺寸的减小,爆轰波胞格图样与波阵面结构随之产生适应性的变形,乃至出现胞格数目的减少和部分三波线的消失;最终,直角模式和对角模式都会转化为顺时针或逆时针的螺旋模式;临界尺寸下,得到了转换过程中新的过渡结构和压力脉冲振幅的变化,并以此初步讨论了直角和对角传播模式的稳定性。  相似文献   

2.
赵焕娟  严屹然  张英华  刘杰 《推进技术》2017,38(11):2572-2579
为研究斜爆轰马赫反射的实验现象以及不稳定性对马赫反射的影响,在矩形爆轰管道中,对3种预混气的马赫反射现象进行了实验研究,取得烟膜记录。烟膜结果显示,三波点高度在楔角附近与无反应三激波理论类似,随后逐渐偏向反应三激波理论,三波点实际高度由反应实际放热量决定,三种气体偏转始末距离与结束偏转距离之比平均值分别为0.42,0.49,0.31,与三者活化能大小关系相符合。胞格结构随初始压力增大而渐趋规律,胞格尺寸也逐渐减小,由CJ区域到过驱区域胞格结构存在明显的转变。横波是影响斜爆轰稳定的重要因素,压力增大可抑制分子的无规则运动,使横波出现的位置更加集中,胞格更为规律。预混气爆轰不稳定度大的气体横波出现的时空位置更不易确定,胞格结构更不规律,胞格尺寸较小。  相似文献   

3.
为研究狭缝内爆轰波起爆及各种传播模式的特点,实验得到了不同初始压力下(p0=10~60k Pa)化学当量比的乙烯/氧气预混气体在高度1.0mm,宽度20mm狭缝内的爆轰性能。采用烟膜片记录爆轰波运行轨迹,高速摄影捕捉火焰面。结果表明:随着初始压力的降低,实验依次得到稳定爆轰模式、"结巴"爆轰模式、驰振爆轰模式和低速稳定传播模式,中间两者为不稳定模式。不稳定爆轰传播模式具有强烈的速度震荡,在一个周期内,烟膜板中周期性的出现过驱爆轰的胞格结构,随后"结巴"爆轰以单头形式与侧壁面发生碰撞并向前传播,驰振爆轰短暂熄灭。低速稳定传播速度为45%的C-J速度,烟膜板中无胞格结构出现。狭缝内爆轰波速度亏损值为10%~15%,高于大尺寸通道中的速度亏损。  相似文献   

4.
刘杰  杜忠华 《推进技术》2016,37(4):608-616
在矩形爆震管道中,选用具有规则胞格结构的高浓度氩气稀释稳态气体C2H2-2.5O2-8.17Ar及不规则胞格结构的非稳态气体C2H2-5N2O,利用纹影和烟膜实验对CJ爆震状态下的爆震波发生马赫反射的转变机理进行了研究。在楔角为30°,5k Pa初始条件下,C2H2-2.5O2-8.17Ar马赫反射转变时马赫杆临界高度约为1.25cm,过驱胞格结构出现的最小距离略小于胞格长度的1/3;C2H2-5N2O马赫反射转变时马赫杆临界高度约为1.5cm,由于其胞格结构不规则,故难以衡量过驱胞格结构出现的位置。实验结果表明:爆震波马赫反射三波点运动轨迹特征为在初始阶段遵循无反应冲击波理论,随后马赫反射发生转变使得运动轨迹逐渐平行于反应冲击波理论,从而验证了爆震波开始形成前导激波马赫反射,由于CJ区域内三波点的介入引起扰动,最终在马赫反射区形成过驱爆震的过程。  相似文献   

5.
为了研究环形管内甲烷的爆轰传播机理,在内径为80 mm的管道内分别安装内径为20 mm、40 mm、60 mm的内管,形成环形管道,进行了甲烷-氧气预混气爆轰实验。将烟膜分别固定在外管的内壁以及内管的内外壁,记录环形管道通道内的三波点轨迹;同时在环管端面安设烟膜记录端面的轨迹。所记录的轨迹较混乱,这是因为横波在沿着传播方向绕着管轴旋转时不断地相互碰撞,反映出甲烷-氧气预混气是典型的不稳定预混气。明显可见当初始压力为12 kPa时,爆轰波在普通圆管内呈现双头螺旋爆轰结构,设有内部小管内径为20 mm 的环管外管内壁得到四头螺旋爆轰结构,说明其他因素不变地情况下,环形管内更容易获得自持爆轰。增大环管内管管径为60 mm,环形通道内烟膜记录中未显示任何三波点轨迹,因为此管径下,胞格尺寸过大,无法容纳于管道中。增大内管管径,外管内壁烟膜记录胞格数量增多,胞格尺寸减小,原因为当边界条件改变时,爆轰极限发生相应的变化,分子获得的初始能量多,反应速率快。  相似文献   

6.
为了研究环形管内甲烷的爆轰传播机理,在内径为80mm的管道内分别安装内径为20mm,40mm,60mm的内管,形成环形管道,进行了甲烷-氧气预混气爆轰实验。将烟膜分别固定在外管的内壁以及内管的内外壁,记录环形管道通道内的三波点轨迹;同时在环管端面安设烟膜记录端面的轨迹。所记录的轨迹较混乱,这是因为横波在沿着传播方向绕着管轴旋转时不断地相互碰撞,反映出甲烷-氧气预混气是典型的不稳定预混气。明显可见当初始压力为12kPa时,爆轰波在普通圆管内呈现双头螺旋爆轰结构,设有内部小管内径为20mm的环管外管内壁得到四头螺旋爆轰结构,说明其它因素不变的情况下,环形管内更容易获得自持爆轰。增大环管内管管径为60mm,环形通道内烟膜记录中未显示任何三波点轨迹,因为此管径下,胞格尺寸过大,无法容纳于管道中。增大内管管径,内径为20mm和40mm的环形管道的外管内壁烟膜记录胞格数量增多,胞格尺寸减小,原因为当边界条件改变时,爆轰极限发生相应的变化,分子获得的初始能量多,反应速率快。  相似文献   

7.
为了明确预混气的不稳定性对螺旋爆轰内部结构的影响,在内径63.5mm的爆轰管道内进行了C_2H_2+2.5O_2+85%Ar,2H_2+O_2+50%Ar,C_2H_2+2.5O_2+70%Ar,C_2H_2+5N_2O和CH_4+2O_2的爆轰实验,得到壁面烟膜和端面烟熏玻璃记录的三波点轨迹。分析了预混气单头、双头、多头螺旋的差别及原因,发现预混气越不稳定,端面结构越难形成规则图形。稳定预混气向内部延伸模式较规律,不稳定预混气向内部延伸规律由于横波间相互干渉较难寻找。对多头胞格进行数字化处理,获得了壁面的三波点轨迹间距和端面的胞格尺寸数据以及方差。发现端面胞格的尺寸与壁面数据发展趋势一致,但是低于壁面数据,其中,C_2H_2+2.5O_2+85%Ar,2H_2+O_2+50%Ar,C_2H_2+2.5O_2+70%Ar和C_2H_2+5N_2O壁面横波间距分别由45.7,72.7,47.1和24.9减小为10.2,17.4,13.2和12.1,端面胞格由19.6,19.9,8.5和18.2减小为6.8,7.1,4.1和5.0。胞格离散度与轨迹间距离散度一致,但是胞格离散度更高,其原因在于壁面处的活化分子因为碰撞到壁面而减少。  相似文献   

8.
为研究螺旋爆轰胞格结构,选取预混气C2H2+2.5O2+85%Ar、C2H2+2.5O2+70%Ar与C2H2+5N2O在光滑管中进行爆轰实验,使用烟膜记录管道侧壁与端面胞格结构。编写MATLAB程序处理烟膜记录,比较侧壁横波间距、端面胞格直径平均值,以及相邻端面胞格中心点距离平均值与标准差。其中,侧壁横波间距明显大于管壁附近端面胞格直径平均值。另外,相较于稳定气,不稳定气近管壁与近管轴区域的端面胞格直径差异更大,不同压力下预混气C2H2+5N2O近管壁与近管轴区域的端面胞格直径差异分别为47.91 %、59.64 %、40.42 % 与37.21 %。为进一步探索爆轰波内部结构,使用CH4+2O2在5 mm、15 mm与25 mm宽度的环形管进行实验,对比侧壁及端面烟膜结果可观测到内部螺旋横波旋转方式。相对环管宽度而言,初始压力是胞格尺寸的主要影响参数,而整体上外侧壁胞格尺寸稍大于内侧壁胞格尺寸。  相似文献   

9.
本文采用二阶精度NND格式,应用改进的二阶段化学反应模型,通过求解二维Euler方程对柱面气相散心爆轰波胞格演化过程进行了数值模拟.计算结果表明在传播过程中,空间尺度的扩张导致了散心爆轰波后气流的自然膨胀,使得多波结构的爆轰阵面呈现出显著的胞格自组织特性.根据计算结果与理论分析,本文归纳了五种胞格演化模式,分别命名为内凹波阵面会聚、波阵面扭结、褶皱波面失稳、胞格自合并和三波点滑移,并定义了各种模式的物理特征,分析了其相关的演化机制和规律.  相似文献   

10.
狭缝内乙烯/氧气预混气体爆轰几何极限的实验   总被引:1,自引:0,他引:1  
为研究狭缝内爆轰波传播极限,实验得到了不同初始压力(0.004~0.04MPa)下化学恰当比的乙烯/氧气预混气体在狭缝高度为1.0~4.0mm狭缝内的爆轰性能.采用烟膜板记录爆轰波运行轨迹,高速摄影捕捉火焰面.结果表明:狭缝高度越小,爆轰极限对应的临界初始压力越高.对于近极限条件内不稳定爆轰传播模式,包括"结巴"爆轰和驰振爆轰,其对应的初始压力范围随着狭缝高度的降低而变宽.考虑初始和边界条件,将水力直径与胞格宽度之比作为合理的爆轰敏感性参数描述预混气体爆轰特性,得出在不同狭缝通道内爆轰极限范围为,即该比值在0.326~0.403之间.   相似文献   

11.
采用块结构自适应网格加密开源程序AMROC,在高性能计算集群中,进行氢气、氧气、氮气详细反应机理的二维超声速热射流爆震起爆自适应网格精细数值模拟,研究在热射流的持续喷射作用下超声速可燃气热射流爆震起爆,以及形成的精细的爆震胞格结构.结果表明:超声速可燃气流中热射流类似气动斜劈,形成局部激波诱导燃烧.超声速可燃气中持续的热射流喷射会形成过驱爆震,并导致不规则爆震胞格的生成.热射流的扰动压缩作用对过驱爆震的形成以及不规则爆震胞格的产起着关键的作用.热射流的扰动压缩波以当地声速通过爆震波后的亚声速区域作用于爆震波,使爆震波处于持续过驱状态,并形成不规则的爆震胞格结构.  相似文献   

12.
为研究旋转爆震发动机(Rotating Detonation Engine, RDE)中燃料/氧化剂喷射和掺混对爆震波的影响及非预混环境下的爆震波的快速起爆与稳定传播,本文采用线性模型爆震发动机(Linear Model Detonation Engine,LMDE)来简化实际燃料喷射与爆震波相互作用的物理问题。通过RNG K-?湍流模型结合7步7组分氢气/空气机理的三维非定常反应流模拟方法,探究真实喷射条件下爆震波与混气相互作用、爆震波衰减及自持的特性。结果表明:氢气/空气的掺混均匀度至少要达到0.6才能使爆震波在非预混环境下传播;氢气孔与空气缝的入口压比需要满足爆震波进入燃烧室时,非均匀混气区恰好集中在氢气孔附近,燃料完全释放能量维持爆震波传播。  相似文献   

13.
对不同条件下气相爆震波在突扩管道和带扩散段管道中的衍射过程进行了数值研究.结果表明:起爆管的直径和临界爆震管直径对爆震波能否成功衍射传入主爆管起到决定性的作用.壁面反射激波与爆震波相互作用在邻近壁面处产生高温、高压区域,有助于减少爆震的诱导时间以及横波间距.扩散段扩散角越小时,反射激波强度越大.高强度的反射激波会将爆震波分为3段,在分界点处产生高温、高压点,对爆震波的衍射传播起到支持作用.   相似文献   

14.
分别在内径为30mm和50mm的脉冲爆震发动机模型上,以煤油为燃料,以空气为氧化剂,成功地进行了两相爆震试验。试验中尝试了各种促进起爆的方法,获得了充分发展的脉冲爆震波。研究发现,在内径小于混合物胞格尺寸的爆震管内,可以形成充分发展的两相脉冲爆震波。通过采用提高煤油温度及对爆震管壁面加热的方法,对于点火及爆震起爆过程起着十分重要的促进作用。   相似文献   

15.
初始压力和狭缝高度对狭缝内起爆距离影响的实验   总被引:1,自引:0,他引:1  
为获得狭缝内爆轰波起爆距离(DID)的变化规律,分别在宽度为10mm,高度为1.0,2.2,2.9,4.0mm,长度为1220mm的狭缝爆轰管内对不同初始压力下(5~45kPa)化学当量比的乙烯/氧气混气进行单次爆轰性能实验研究.根据烟迹法、高速摄影图片判定起爆位置,得到初始压力和狭缝高度对爆轰波起爆距离的影响规律.结果表明:①在初始压力为10~20kPa时,起爆距离随着狭缝高度增加逐渐缩短;②在初始压力为25~40kPa时,起爆狭缝距离随着狭缝高度变大先降低后增加,在初始压力为45kPa时,起爆距离随着狭缝高度增加而变长;③综合初始压力和狭缝高度的影响,初步得到起爆距离随初始压力和狭缝高度等参数变化的量纲归一化经验公式.   相似文献   

16.
为消除现有脉冲爆震发动机对外部脉冲起爆装置的依赖并提高脉冲爆震燃烧室工作频率,提出了一种多个爆震室封闭串联的多管燃烧室方案,通过管间的射流传递实现爆震室内的快速短距离起爆。实验结果表明,多个爆震室间可以实现逐级射流起爆,并且可以实现快速起爆,起爆所需要的时间约为1.0~1.2ms,起爆距离约为500mm,远远小于火花塞直接点火时的结果。弱火焰射流可以通过逐级增强的方式最终在下游某个爆震单元内形成爆震波。单个爆震室内射流进入和射出的时间问隔可以达到1.2~1.5ms,大约需要8个爆震单元才可能实现爆震波的封闭串联传播:  相似文献   

17.
原理模型脉冲爆震发动机性能参数的实测与分析   总被引:8,自引:0,他引:8  
应用爆震波理论对原理模型脉冲爆震发动机(PDE)中的压力及平均推力作了理论分析,且按实际给定参数进行了计算。并在自行研制的模型脉冲爆震发动机上对这两个参数进行了实测。对理论值与实测值的比较分析表明,该原理模型PDE能产生脉冲爆震波和推力。   相似文献   

18.
刘鸿  王家骅  王政伟  宫继双  唐豪  张靖周 《推进技术》2010,31(1):99-104,110
为了提高脉冲爆震发动机(PDE)的综合性能,在冷态条件下研究了螺旋钝体组件和扰流片钝体组件的总压损失,同时研究了它们在不同工作频率下的爆震波压力,将两者结合起来进行比较,确定相应组件的损失是有效总压损失还是无效总压损失。研究表明:激波反射器能反射、会聚强激波,增加爆震波峰值压力,因此它的总压损失大部分为有效损失;对于两相混气,平面火焰发生器和中心锥的总压损失基本为无效损失;总体上讲,螺旋钝体组件优于扰流片钝体组件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号