首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interplanetary coronal mass ejections (ICMEs) originating from closed field regions on the Sun are the most energetic phenomenon in the heliosphere. They cause intense geomagnetic storms and drive fast mode shocks that accelerate charged particles. ICMEs are the interplanetary manifestations of CMEs typically remote-sensed by coronagraphs. This paper summarizes the observational properties of ICMEs with reference to the ordinary solar wind and the progenitor CMEs.  相似文献   

2.
In this paper I am reviewing recent advances and open disputes in the study of the terrestrial ring current, with emphasis on its storm-time dynamics. The ring current is carried by energetic charged particles flowing toroidally around the Earth, and creating a ring of westward electric current, centered at the equatorial plane and extending from geocentric distances of about 2 R E to roughly 9 R E. This current has a permanent existence due to the natural properties of charged particles in the geospace environment, yet its intensity is variable. It becomes more intense during global electromagnetic disturbances in the near-Earth space, which are known as space (or magnetic or geomagnetic) storms. Changes in this current are responsible for global decreases in the Earth's surface magnetic field, which is the defining feature of geomagnetic storms. The ring current is a critical element in understanding the onset and development of space weather disturbances in geospace. Ring current physics has long been driven by several paradigms, similarly to other disciplines of space physics: the solar origin paradigm, the substorm-driver paradigm, the large-scale symmetry paradigm, the charge-exchange decay paradigm. The paper addresses these paradigms through older and recent important investigations.  相似文献   

3.
Polar auroras     
Conclusion We have reviewed the somewhat conflicting data which have accumulated on such a vast scale in recent years. It is now becoming clearer which studies are likely to produce significant results, and this in itself may be a very important consequence of the assimilation of accumulated data. We must however ask in conclusion: does the outer radiation belt exist during the polar aurora? If the interplanetary media or the solar wind, carry magnetic fields, then these fields can be of two kinds. Firstly, they may be magnetic lines of force dragged by the plasma from the Sun. Secondly, the interplanetary medium or the solar wind are capable of carrying closed magnetic lines of force which are not related to the Sun. When such fields approach the Earth, the high-latitude geomagnetic lines of force which previously passed through the equatorial plane on the boundary of the magnetosphere, may deform in such a way as to pass out of one geomagnetic poles, miss the equatorial plane, enter the interplanetary plasma, and after passing through a very considerable volume of this plasma reach the other geomagnetic pole. This will in effect amount to an attachment through the medium of magnetic lines of force of enormous regions of ionised interplanetary matter or of solar wind to the Earth's magnetosphere. As these extraneous magnetic fields depart from the Earth's neighbourhood, the original dipole field will be reestablished. Rapid variations in the configuration of the geomagnetic field will occur during the interaction. It is possible that energetic particles appear with a very high degree of probability on the boundary of the geomagnetic field during such deformations. If this is so, then the outer radiation belt is merely a temporary formation appearing during the quiet intervals between geomagnetic disturbances, and containing a small residue of energetic charged particles, which exist during the polar auroras but do not succeed in entering the lower atmosphere during this time. In this process the particles giving rise to the polar auroras originate in the plasma of the solar corpuscular streams flowing past the Earth.Under the action of a solar wind the geomagnetic field is compressed at the front and elongated at the rear. This resembles the original Chapman theory of geomagnetic storms more closely than any other theory. Since the elongated geomagnetic field on the night side of the Earth is of a lower intensity, it may be associated with the magnetic fields brought in by the incident medium right down to very great depths. This may be responsible for the observed displacement at the zone of the polar auroras towards lower geomagnetic latitudes at night.Translated by the Express Translation Servies, Wimbledon, London.  相似文献   

4.
The morphology of development of auroral flares (magnetospheric substorms) for both electron and proton auroras is summarized, based on ground-based as well as rocket-borne and satellite-borne data with specific reference to the morphology of solar flares.The growth phase of an auroral flare is produced by the inflow of the solar wind energy into the magnetosphere by the reconnection mechanism between the solar wind field and the geomagnetic field, thus the neutral and plasma sheets in the magnetotail attaining their minimum thickness with a great stretch of the geomagnetic fluxes into the tail.The onset of the expansion phase of an auroral flare is represented by the break-up of electron and proton auroras, which is associated with strong auroral electrojets, a sudden increase in CNA, VLF hiss emissions and characteristic ULF emissions. The auroral break-up is triggered by the relaxation of stretched magnetic fluxes caused by cutting off of the tail fluxes at successively formed X-type neutral lines in the magnetotail.The resultant field-aligned currents flowing between the tailward magnetosphere and the polar ionosphere produce the field-aligned anomalous resistivity owing to the electrostatic ion-cyclotron waves; the electrical potential drop thus increased further accelerates precipitating charged particles with a result of the intensification of both the field-aligned currents and the auroral electrojet. It seems that the rapid building-up of this positive feedback system for precipitating charged particles is responsible for the break-up of an auroral flare.  相似文献   

5.
The coupling between the ionosphere and the outer magnetosphere depends on the topology of the geomagnetic field. Some aspects of the closed and open magnetospheric models are briefly discussed.The assumption that the geomagnetic field lines are equipotentials is critisized both on observational and on theoretical grounds. Measurements of H Doppler profiles, of precipitating particles above the ionosphere, and of charged particle densities in the magnetosphere indicate the existence of electric fields, E\\, parallel with the magnetic field.Two different models of E\\ are considered. Both models violate the condition of frozen-in magnetic fields. In one of them there are occasional transient electric field impulses along the field lines which cause precipitation splashes. The other model invokes electrostatic fields which vanish occasionally due to instabilities. This gives rise to precipitation splashes of about equal numbers of ions and electrons.The latter model seems to be favoured by known satellite data concerning the pitch angle distributions of electrons above the ionosphere.It is suggested that electric fields in space should be measured by satellites and rockets. Expected values of the fields in different regions of space are given.  相似文献   

6.
This paper is a continuation of the review (Shabansky, 1968), which is quoted here as I. This paper considers the problems related to the processes of the interaction of charged particles with the geomagnetic field, and also contains the original results obtained by the author (1, 2.1; 2.2; 2.3.4; 2.4; 3.1; 3.2; 3.3; 3.4.3). The problems under discussion in the Sections 1; 2.1; 2.2 were partly dealt with in the end of paper I. However, the equations of motion for the two-and three-component plasma shortly represented in 1.1, 1.2, take into account the inertial terms in distinction to paper I. The ionospheric current induction (1.4), the transition layer (2.1) and the magnetotail rotation (2.2) are considered in more detail than in I.The references are divided into 2 parts: the papers published in Soviet magazines are listed separately, using the Cyrillic alphabet.  相似文献   

7.
8.
This review addresses possible biospheric effects of geomagnetic polarity transitions. During a transition the magnetic field at the surface of the Earth decreases to about 10% of its current value. If the geomagnetic field is a shield against energetic particles of solar or cosmic origin then biospheric effects can be expected. We review the early speculations on the problem and discuss in more detail its current status. We conclude that no clear picture of a geomagnetic link, a causal relation between secular magnetic field variations and the evolution of life on our planet can be drawn.  相似文献   

9.
Simpson  J.A. 《Space Science Reviews》1998,83(1-2):169-176
This brief review of the pre-Ulysses era begins with the first measurements by ionization chambers in 1937 of a cosmic ray 27-day intensity variation that was believed to have its origin in recurrent variations of the geomagnetic field. However, with the introduction of neutron monitor analysis of the nucleonic component, it was shown in the 1940s and 1950s that this cosmic ray intensity variation arose from interplanetary dynamical phenomena. Beginning in the 1960s direct spacecraft investigations in the heliosphere with Pioneer-10, Pioneer-11, Voyager-1 and Voyager-2 proved that Corotating Interaction Regions were not only the source of the cosmic ray recurrent intensity modulation, but also the source of charged particles accelerated in corotating forward and reverse shocks associated with the corotating interaction regions.These early investigations, confined to low latitudes, have contributed to the understanding of solar phenomena, interplanetary dynamics, charge particle acceleration and the Sun-Earth convection.  相似文献   

10.
The development of currents due to arbitrary distributions of trapped particles in the geomagnetic field is described. These currents form the Earth's ring current and are responsible for world wide decreases of the surface magnetic field observed during magnetic storms. It is shown that we do not yet know the relative abundances of the ions forming the ring current. Because of this we do not understand how various sources mix to produce the ring current. Several possible generation mechanisms are discussed. Finally, the decay of the ring current is discussed and is shown to be due primarily to charge exchange with important secondary effects attributable to wave-particle interactions.  相似文献   

11.
A review is given on the distribution and origin of the large-scale electric field in the magnetosphere and its influence on the dynamical behavior of the magnetospheric plasma. Following a general discussion on the gross structure of the magnetosphere and its tail, two principal electric field systems are deduced from ground-based geomagnetic variations. One is responsible for the polar substorm, the DP 1 field, which is closely associated with the activation of the auroral electrojet. The other is responsible for the twin current vortices, the DP 2 field, and this represents the general convective system set up in the magnetospheric plasma.The origin of these magnetospheric electric fields is possibly resided in the domain of the solar wind interacting with the outer geomagnetic field. However, the mechanism, in which the energy is transferred, is still quite controversial. Several theories so far proposed are re-examined, and some modification of them are suggested to have a consistent understanding of these two types of electric fields. The effects of electric fields on magnetospheric plasma dynamics are described, such as the formation of the plasmapause, the acceleration and diffusion of energetic particles in the radiation belt.  相似文献   

12.
The current state of research involving manifestations of nonlinearity in geomagnetic pulsations is reviewed. Traditionally, the attention of researchers was focused on the effects of resonant interaction of geomagnetic pulsations with small groups of energetic particles, which actually means the study of the quasi-linear relaxation of radiation belt ions, the modulation of auroral electron fluxes, etc. The present review concentrates on the problem of the nonlinear effect influence of pulsations on the backgroud (cold) plasma and on the geomagnetic field. This kind of interaction results in a significant modification of the plasma distribution in the magnetosphere. Self-consistent wave structures—solitons and vortices may occur as well. Such nonlinear effects contribute to physics of geomagnetic pulsations and are also of fundamental importance for general physics. Another set of more narrow problems considered in the review, is related to phenomenological modeling of fluctuational and critical phenomena in the magnetosphere. The essence of our approach is to present the magnetosphere as a black box, whose properties should be determined by the statistical characteristics of its output signals. This approach to phenomenology can be a useful supplement to the methods of microscopic modeling aimed at detecting nonlinear manifestations of geomagnetic pulsations.  相似文献   

13.
Measurements made with the charged particle spectrometer of the Max-Planck-Institut für Aeronomie onboard GEOS-1 were used to investigate the behaviour of energetic electrons and ions in the dusk sector of the magnetosphere. During substorms the integral ion flux ( 24 KeV) increased whereas the integral electron flux ( 20 KeV) first decreased and later on also increased. The dependences of these flux variations on pitch-angle and particle energy are described and discussed in terms of particle drift in the geomagnetic and geoelectric fields and adiabatic energy variations. The results also provide some information on the source region of the drifting particles.  相似文献   

14.
Coronal disturbances lead to geomagnetic storms, proton showers, auroras and a wide variety of other phenomena at Earth. Yet, attempts to link interplanetary and terrestrial phenomena to specific varieties of coronal disturbances have achieved only limited success. Here, several recent approaches to prediction of interplanetary consequences of coronal disturbances are reviewed. The relationships of shocks and energetic particles to coronal transients, of proton events to γ-ray bursts, of proton events to microwave bursts, of geomagnetic storms to filament eruptions and of solar wind speed increases to the flare site magnetic field direction are explored. A new phenomenon, transient coronal holes, is discussed. These voids in the corona appear astride the long decay enhancements (LDE's) of 2–50 Å X-ray emission that follow Hα filament eruptions. The transient holes are similar to long-lived coronal holes, which are the sources of high speed solar wind streams. There is some evidence that transient coronal holes are associated with transient solar wind speed increases.  相似文献   

15.
16.
17.
Whereas the entry mechanism of energetic solar particles into the open field line region of the magnetosphere is now a rather well understood process, transport processes of solar particles in the closed field line region are still unclear and under dispute. The main difficulty lies not only in the fact that different field models predict different behavior of the particles in the quasi-trapping region (e.g. cut-off latitude), but that dynamic changes of the magnetosphere as geomagnetic storms and substorms greatly influence the particle distribution. The present review tries to summarize the status of knowledge regarding solar proton behavior on closed magnetospheric field lines. Together with a presentation of recent measurements in the closed field line region relevant theoretical problems are discussed. They fall either under the study of single particle motion in different static magnetospheric configurations (due to different field models or due to real, e.g. ring current induced changes), or under the study of resonant interaction processes as pitch angle scattering and radial diffusion.Invited Lecture, Second Meeting of the European Geophysical Society, September 1974, Trieste, Italy.  相似文献   

18.
地磁场是地球的固有资源,利用地磁场匹配进行导航是一种新型导航技术.与传统的惯性导航和卫星导航比较,地磁导航具有无积累误差、抗干扰、隐蔽性好、导航信息丰富等优势.文章介绍了地磁导航的3个基本要素,即磁场测量技术、地磁模型以及定位与导航技术.分析了弱磁场磁力仪在地磁导航中的应用及其优缺点,讨论了地磁场模型和地磁匹配算法,展望了地磁导航技术的应用前景.  相似文献   

19.
This paper reviews the principal results of direct measurements of the plasma and magnetic field by spacecraft close to the Earth (within the heliocentric distance range 0.7–1.5 AU). The paper gives an interpretation of the results for periods of decrease, minimum and increase of the solar activity. The following problems are discussed: the interplanetary plasma (chemical composition, density, solar wind flow speed, temperature, temporal and spatial variation of these parameters), the interplanetary magnetic field (intensity, direction, fluctuations and its origin), some derived parameters characterizing the physical condition of the interplanetary medium; the quasi-stationary sector structure and its connection with solar and terrestrial phenomena; the magnetohydrodynamic discontinuities in the interplanetary medium (tangential discontinuities and collisionless shock waves); the solar magnetoplasma interaction with the geomagnetic field (the collisionless bow shock wave, the magnetosheath, the magnetopause, the Earth's magnetic tail, the internal magnetosphere characteristics), the connection between the geomagnetic activity and the interplanetary medium and magnetosphere parameters; peculiarities in behaviour of the interplanetary medium and magnetosphere during geomagnetic storms; energetic aspects of the geomagnetic storms.  相似文献   

20.
基于Fletcher成核理论及均质-非均质凝结双流体模型,讨论了电荷作用对凝结流动的影响,结果表明:有无电荷影响时,成核率计算公式精度均较高,流场参数的计算结果与实验结果吻合良好,相对误差不超过5%,表明所建的均质-非均质凝结双流体模型具有较高精度.不带电时,加入颗粒半径为5nm颗粒前后流场过冷度差别较小,加入颗粒半径分别为8nm和10nm颗粒后过冷度峰值虽分别降低2K和7K,但均导致自发凝结向下游迁移.当颗粒带电荷量为Q=1e,加入颗粒半径为5nm颗粒情况下对减小成核自由能障、增加非均质成核率的作用最为明显,这一作用在颗粒半径为8nm时较弱,颗粒半径为10nm情况下最弱.当带电量增加至Q=3e时,加入颗粒半径分别为5nm和8nm颗粒情况下峰值过冷度与均质凝结相比分别下降10K和6K,且较明显地抑制了自发凝结发生.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号