共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
由于可以补偿惯性器件在三个轴向上的输出误差,双轴旋转调制技术被广泛应用于捷联惯导系统(SINS)。选择了一种合理且实用的十六次序双轴转位方案,并对其调制原理和误差进行了分析。初始对准技术是捷联惯导系统的一项重要技术,其对准精度直接决定了后续导航的精度。在粗对准完成后,当姿态误差角较大时,后续的精对准误差模型呈非线性特性,故选择了滤波精度高、稳定性强的平方根容积Kalman滤波算法(SCKF)来解决这一问题。考虑到在实际对准过程中,量测噪声的统计特性易发生变化,将SCKF算法与Sage-Husa算法相结合,在传统Sage-Husa SCKF算法的基础上提出了一种改进的自适应滤波算法(ASCKF)。该算法采用QR分解来完成对噪声协方差的平方根矩阵估计,从而避免了传统Sage-Husa SCKF算法中所估噪声协方差矩阵不正定的问题。最后,通过仿真证实了ASCKF算法可被很好地应用于量测噪声统计特性发生变化的初始对准中。 相似文献
3.
4.
惯导系统受限于目前惯性器件长期稳定性水平,对服役期内武器装备的使用和维护提出了定期标定的保障需求。当前主要有两种标定方式:不拆卸情况下的武器装备整体标定与拆卸情况下的惯导系统单机标定。上述两种方式能够准确分离和标定的误差参数较少,且对设备、场地、人力、时间等保障条件提出了较高的要求。基于双轴旋转惯导系统开展自标定技术研究,设计了一种能够实现绝大部分误差分离和标定的转位方案,提出了一种大幅缩短标定时间的数据处理方案,实现了武器装备不拆卸、不转动条件下误差参数的快速、高精度、自动化标定,大大降低了武器装备的使用维护成本、减轻了部队的保障负担,试验结果验证了该自标定方法的正确性和有效性。 相似文献
5.
旋转调制技术实现了捷联惯导的高精度长航时导航,但轴系非正交误差的存在影响着导航姿态精度。传统轴系非正交误差补偿方法是针对旋转轴停留在固定位置完成的,提出一种全空间的轴系非正交误差补偿方法,不限定旋转轴的转停位置。试验结果证明该误差补偿方法较传统方法更优,对惯导姿态精度提升明显。 相似文献
6.
目前国内外长航时高精度自主惯导系统多采用双轴旋转调制自动补偿技术,而旋转方案设计对系统导航精度影响至关重要.双轴惯导系统按结构可分为外环水平结构和外环航向结构两类.分析了外环水平结构双轴惯导系统在旋转方案设计中的局限性,考虑到光纤陀螺输出特性,指出外环水平结构双轴光纤惯导系统不宜采用传统旋转方案,并提出了一种该类双轴光纤惯导系统的旋转方案设计方法,最后对所设计旋转方案与十六位置旋转方案进行试验对比,试验表明此设计方案导航精度提升了71%. 相似文献
7.
陀螺标度因数误差是影响长航时船用旋转调制惯导系统的关键误差源,其与地球自转和载体运动的耦合误差,可导致惯导系统误差发散。针对此问题,结合船用惯导使用特点,采用外航向、内俯仰的双轴旋转框架结构。在此基础上,提出了一种基于惯性系的双轴旋转惯导系统多位置转停调制方案,通过补偿地球自转和载体运动在双轴旋转惯导内外框架旋转轴上的投影分量,可显著降低陀螺标度因数误差对长航时导航精度的影响。数学仿真和船载试验结果表明,在载体航向角运动的场景下,该方法与传统的双轴旋转调制方案相比可有效抑制地球周期项振幅的增大,系统导航位置误差的发散也降低50%以上。 相似文献
8.
9.
在未来作战环境下,长航时远程作战飞机对全自主长航时高精度导航系统提出了迫切的需求,对提高作战能力起着重要作用.对比各种导航手段,其中双轴旋转调制激光惯导系统是目前唯一一种可行的全天候全自主高精度导航手段,从双轴旋转调制惯导系统的原理出发,对双轴旋转调制激光惯导系统机载应用的误差特性及关键技术进行深入分析,结果表明:对于1n mile/12h的导航精度,双轴旋转调制惯导系统较捷联惯导系统对陀螺漂移精度要求降低一个数量级,关键技术实现方案合理可行. 相似文献
10.
11.
惯性导航系统的误差随时间累积,旋转调制技术可以有效地提高惯导系统的长航时精度,旋转调制方案是决定旋转式捷联惯导系统导航精度的一个重要因素.针对双轴旋转惯导系统,相较于16次序转位方案,提出了一种新的32次序双轴旋转调制方案.根据捷联惯导系统的误差方程,推导出旋转捷联惯导的误差方程,分析了误差补偿的机理,研究了惯性器件常值偏置误差、标度因数误差和安装角误差的传播特性.仿真结果表明,32次序双轴旋转调制方案相对于16次序转位方案有明显的优势,可以有效地降低姿态角误差和经纬度误差. 相似文献
12.
旋转捷联惯导系统采用旋转调制误差补偿技术对陀螺仪和加速度计误差进行调制,可以提高系统导航精度。在简要分析旋转调制误差补偿机理基础上,研究了单轴旋转方案中载体常值旋转和周期旋转2种角运动模式对导航误差的影响。结果表明:载体特定角运动对旋转捷联惯导的误差补偿效果有一定影响,且单轴正反转停方案中误差补偿效果所受影响相对较小。 相似文献
13.
初始对准是惯性导航的关键技术之一,对准结果会直接影响系统的导航精度.针对光纤陀螺惯导系统,缩短对准时间、提高系统对准精度等技术难点,开展了高精度光纤惯导系统连续旋转对准技术研究,深入分析了常值陀螺漂移、随时间变化的陀螺漂移、陀螺标度因数常值误差、陀螺标度因数不对称误差、陀螺安装误差、陀螺随机游走等误差项对系统对准精度的影响,对比了现有旋转方案的优点与不足,提出了一种改进的单轴二位置旋转方案.试验结果表明,在采用该旋转方案的情况下,对准时间8min方位角对准精度可达到30"(1σ),具有重要的工程应用价值. 相似文献
14.
针对单轴旋转捷联惯导系统快速高精度对准的要求,设计了一种压缩和存储少量数据的回溯式对准方法。首先进行实时的惯性系双矢量定姿粗对准获得初始时刻的姿态矩阵,同时每秒抽取和存储关键数据;待粗对准结束后,利用初始姿态和存储数据进行回溯卡尔曼滤波精对准,并对惯性测量组件和转位机构之间的安装杆臂进行在线估计。仿真结果验证了算法的有效性。 相似文献
15.
旋转机构是旋转调制捷联惯导系统的关键部件之一。为了精确模拟旋转机构的动力学特性,研究了支撑旋转轴系的双列球轴承的动力学建模方法,提出了使用Bushing单元来建立同时具有径向移动刚度、轴向移动刚度和径向角刚度的三向刚度轴承动力学模型的方法。利用有限元数值仿真方法计算了三向刚度数值,并利用轴承手册上的经验公式进行了验证。在此基础上,建立了含弹性轴承支撑的旋转调制捷联惯导系统旋转机构的结构动力学有限元模型,分析比较了轴承有无角刚度两种状态下的固有模态。分析结果表明:对于旋转调制捷联惯导系统旋转机构来说,轴承模型角刚度对计算精度的影响较大,角刚度已知的模型更接近真实情况。 相似文献
16.
旋转捷联惯导系统采用旋转调制误差补偿技术对陀螺仪和加速度计误差进行调制,可以提高系统导航精度。文章借助捷联系统基本误差方程,简要分析了旋转调制误差补偿的机理;通过对几种典型IMU旋转方案的分析和仿真,验证了旋转调制误差补偿技术的有效性并比较了不同旋转方案的特点。 相似文献
17.
单轴旋转惯导系统很容易实现多位置对准,在初始对准中通过改变姿态矩阵,可以提高惯导系统的可观测度,从而提高初始对准的精度.推导了单轴旋转惯导系统的误差方程,在分段线性定常系统理论的基础上,利用奇异值分解的方法,对多位置对准时系统各状态变量的可观测度进行了分析.分析了旋转轴不正交误差对初始对准精度的影响,结果表明旋转轴不正交误差严重影响对准精度,需要对旋转轴不正交误差进行标定和补偿.提出了一种旋转轴不正交误差的标定方案,并对该方案进行了仿真分析,验证了该方案的可行性. 相似文献
18.
19.
针对旋转惯导系统内使用的导电滑环具有寿命低、可靠性差、传输信号带宽窄的缺点,设计了一种基于激光通信的非接触信号传输装置,用于代替导电滑环传输电信号,可大大提高使用寿命、传输信号精度、可靠性和带宽。文中详细介绍了装置的设计原理、技术实现及验证,该装置具有RS232、RS422、CAN、TTL等多种输入输出接口,可满足大部分惯导系统信号传输要求,有效传输距离为20~80mm,经过各个环节的精密设计,可保证10~(-7)量级的传输精度,通过各种测试充分验证了该装置代替导电滑环传输电信号的可行性,为提高旋转惯导的可靠性奠定基础。 相似文献