首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Russia has gained a lot of experience in operating the space suits (SS) during the extravehicular activities (EVA) by the crews of SALYUT-6, SALYUT-7 and MIR orbiting stations. A total of 21 Orlan-type space suits of various models were operated onboard the orbiting stations (OS) during almost 20 years period. Some of these space suits served up to 3 years in orbit. The paper reviews special features of long SS operation (without return to the Earth) onboard an orbiting station as well as the problems associated with SS repeated use by several crews. An analysis of measures to support solving of the problems of SS long stay and reliable operation onboard the orbiting station is made: selection of a corresponding SS type and separate elements design; selection of the materials; routine and preventive maintenance; development tests. The advantages of the space suit of a semi-rigid type for solving the above problems are shown. The paper includes a short analysis of space suits' operation onboard the Russian orbiting station MIR, and some restuts of inspection of the Orlan-DMA space suit returned to the Earth from orbit by STS-79 alter long operation in orbit. Recommendations on further improvement of the space suits for EVA operations in the International Space Station (ISS) are given.  相似文献   

2.
Since 1977, EVA suits of the semi-rigid type have been used to support sorties from Russian orbiting stations. Currently, within the MIR station program, the Orlan-DMA, the latest modification of the Orlan semi-rigid EVA suit is used by crewmembers. Quite some experience has been gained by Russia in operations of the Orlan type suits. It has proved the advantages of the EVA suit of a semi-rigid configuration, featuring donning/doffing through a hinged backpack door with a built-in life support system. Meanwhile there were some wishes and comments from the crewmembers addressed to the enclosure design and some LSS components. Currently a number of ways and methods are being developed to improve operational characteristics of the suit as well as to enhance its reliability and lifetime. The forthcoming EVAs to be performed by the STS-MIR crewmembers and future EVAs from the common airlock of the International Space Station Alpha make implementation of the planned improvements even more consistent. The paper analyzes the experience gained in the Orlan-DMA operation and discusses planned improvements in light of the forthcoming activities. In particular the Orlan enhancement program is aimed to make the donning/doffing easier, enhance enclosure mobility, improve the condensate removal unit, increase the CCC (Contamination Control Cartridge) operation time and simplify the onboard subsystem design concept.  相似文献   

3.
The experience in operation and improving the Orlan-type space suits   总被引:1,自引:0,他引:1  
Nowadays significant experience has been gained in Russia concerning extravehicular activity (EVA) with cosmonauts wearing a semi-rigid space suit of the "Orlan" type. The conditions for the cosmonauts' vital activities, the operational and ergonomic features of the space suit and its reliability are the most critical factors defining the efficiency of the scheduled operation to be performed by the astronaut and his safety. As the missions performed by the cosmonauts during EVA become more and more elaborate, the requirements for EVA space suits and their systems become more and more demanding, resulting in their consistent advancement. This paper provides certain results of the space suit's operation and analysis of its major problems as applied to the Salyut and MIR orbiting stations. The modification steps of the space suit in the course of operation (Orlan-D, Orlan-DM, Orlan-DMA) and its specific features are presented. The concept of the suited cosmonauts' safety is described as well as trends for future space suit improvements.  相似文献   

4.
The paper deals with the construction of physical/chemical life support systems of orbiting space station Mir and the Russian segment of the international space station (ISS). Based on experience gained in development and long-term operation of systems for water recovery and air revitalization balance and energy/mass characteristics of promising life support systems (LSS) are analyzed. Physical/chemical life support systems with regenerative systems updated as a result of the operation on the ISS may be used at an initial phase of manned interplanetary missions.  相似文献   

5.
In the recent years the Russian Orlan-M space suits have been improved as applied to their operational requirements for the ISS. A special attention is paid to enhancement of EVA crew efficiency and safety. The paper considers the main problems regarding specific features of the Russian space suit operation in the ISS, and analyses measures on their solution. In particular, the problems associated with the following are considered: enhancement of the anthropometric range for the EVA crewmembers; use of some US EMU elements and unified NASA equipment elements; Orlan-M operation support in the wide range of the ISS thermal conditions; use of Simplified Aid For Extravehicular activity Rescue (SAFER) designed as a self-rescue device, which will be used for an EVA crewmember return in the event that he (she) breaks away inadvertently from the ISS surface. The paper states the main space suit differences with reference to solution of the above problems. The paper presents briefly the design of space suit arms developed for crewmembers with small anthropometric parameters, as well as peculiarities and test results for the gloves with enhanced thermal protection. Measures on further space suit development with the purpose to improve its performances are considered.  相似文献   

6.
Analysis of the extravehicular activity (EVA) sortie experience gained in the former Soviet Union and physiologic hygienic aspect of space suit design and development shows that crewmember productivity is related to the following main factors: -space suit microclimate (gas composition, pressure and temperature); -limitation of motion activity and perception, imposed by the space suit; -good crewmember training in the ground training program; -level of crewmember general physical performance capabilities in connection with mission duration and intervals between sorties; -individual EVA experience (with accumulation) at which workmanship improves, while metabolism, physical and emotional stress decreases; -concrete EVA duration and work rate; -EVA bioengineering, including selection of tools, work station, EVA technology and mechanization.  相似文献   

7.
Design to safety: experience and plans of the Russian space suit programme   总被引:1,自引:0,他引:1  
The paper presents the analysis of the Russian experience gained in the operations of Salyut-6, 7 and Mir orbital stations. The main factors determining their effectiveness and safety are considered and the main requirements to the EVA suit, as the most important tool for the EVA, are formulated.  相似文献   

8.
To meet the significant increase in EVA demand to support assembly and operations of the International Space Station (ISS), NASA and industry have improved the current Shuttle Extravehicular Mobility Unit (EMU), or "space suit", configuration to meet the unique and specific requirements of an orbital-based system. The current Shuttle EMU was designed to be maintained and serviced on the ground between frequent Shuttle flights. ISS will require the EMUs to meet increased EVAs out of the Shuttle Orbiter and to remain on orbit for up to 180 days without need for regular return to Earth for scheduled maintenance or refurbishment. Ongoing Shuttle EMU improvements have increased reliability, operational life and performance while minimizing ground and on-orbit maintenance cost and expendable inventory. Modifications to both the anthropomorphic mobility elements of the Space Suit Assembly (SSA) as well as to the Primary Life Support System (PLSS) are identified and discussed. This paper also addresses the status of on-going Shuttle EMU improvements and summarizes the approach for increasing interoperability of the U.S. and Russian space suits to be utilized aboard the ISS.  相似文献   

9.
Among the principal objectives of the Phase 1 NASA/Mir program were for the United States to gain experience working with an international partner, to gain working experience in long-duration space flight, and to gain working experience in planning for and executing research on a long-duration space platform. The Phase 1 program was to provide the US early experience prior to the construction and operation of the International Space Station (Phase 2 and 3). While it can be argued that Mir and ISS are different platforms and that programmatically Phase 1 and ISS are organized differently, it is also clear that many aspects of operating a long-duration research program are platform independent. This can be demonstrated by a review of lessons learned from Skylab, a US space station program of the mid-1970s, many of which were again “learned” on Mir and are being “learned” on ISS. Among these are optimum crew training strategies, on-orbit crew operations, ground support, medical operations and crew psychological support, and safety certification processes.  相似文献   

10.
A feasibility study in 1992 showed the benefits of a common European Russian space suit development, EVA Suit 2000, replacing the Russian space suit Orlan-DMA and the planned European Hermes EVA space suit at the turn of the century. This EVA Suit 2000 is a joint development initiated by the European Space Agency (ESA) and the Russian Space Agency (RKA). The main objectives of this development program are: first utilization aboard the Russian Space Station MIR-2; performance improvement with respect to current operational suits; development cost reduction. Russian experience gained with the present extravehicular activity (EVA) suit on the MIR Space Station and extensive application of European Technologies will be needed to achieve these ambitious goals. This paper presents the current status of the development activities, the space suit system design and concentrates in more detail on life support aspects. Specific subjects addressed will include the overall life support conceptual architecture, design features, crew comfort and operational considerations.  相似文献   

11.
During extravehicular activities (EVA) outside the spacecraft, astronauts have to work under reduced pressure in a space suit. This pressure reduction induces the risk of decompression sickness (DCS) by the formation of gas bubbles from excess nitrogen dissolved in the organism by breathing air at normal pressure. Under laboratory conditions the gas bubbles moving in the blood stream can be detected by the non-invasive ultrasonic Doppler method. By early detection of excessive bubble formation the development of DCS symptoms may be prevented by early application of preventative measures. The method could also be useful when applied in the space suit in order to compare the results of laboratory tests with operational results, because there is a discrepancy according to the DCS risk of laboratory experiments and actual EVA missions, where no symptoms have been reported yet. A prototype Doppler sensor has been developed and implemented in the Russian Orlan suit. To investigate the feasibility of this method under simulated space conditions, the equipment has been used in a series of 12 thermovacuum chamber tests with suited subjects, where intravenous bubble formation was compared to unsuited control experiments. In more than 50% of the suited tests good Doppler recordings could be achieved. In some cases with unsatisfying results the signal could be improved by breathholding. Although the results do not yet allow any conclusion about a possible difference between suited and unsuited subjects due to the small number of tests performed, the method proved its feasibility for use in EVA suits and should be further developed to enhance the safety of EVA procedures.  相似文献   

12.
The aim of this paper is to review the main results of medical support of 78 two-person extravehicular activities (EVAs) which have been conducted in the Mir Space Program. Thirty-six male crewmembers participated in these EVAs. Maximum length of a space walk was equal to 7 h 14 min. The total duration of all space walks reached 717.1 man-hours. The maximum frequency of EVA's execution was 10 per year. Most of the EVAs (67) have been performed at mission elapsed time ranging from 31 to 180 days. The oxygen atmosphere of the Orlan space suit with a pressure of 40 kPa in combination with the normobaric cabin environment and a short (30 min) oxygen prebreathe protocol have minimized the risk of decompression sickness (DCS). There has been no incidence of DCS during performed EVAs. At the peak activity, metabolic rates and heart rates increased up to 9.9-13 kcal/min and 150-174 min-1, respectively. The medical problems have centred on feeling of moderate overcooling during a rest period in a shadow after the high physical loads, episodes with tachycardia accompanied by cardiac rhythm disorders at the moments of emotional stress, pains in the muscles and general fatigue after the end of a hard EVA. All of the EVAs have been completed safely.  相似文献   

13.
14.
Man in space.     
Today, more than 20 years after the first in the world man's space walk, soviet cosmonautics gained large experience of extravehicular activity (EVA). Space suits of high reliability, onboard facilities for passing through the airlock, sets of special tools and technological rigging, as well as procedures for carrying out various EVA's were developed. In the course of the Salyut-7 space station orbital operation the EVA's have become regular. The author of the report as the participant of the EVA's considers the main steps of man activities in space and analyzes specific problems arised in performing such activities.  相似文献   

15.
The primary objective of the International Space Station (ISS) is to provide a long-term quiescent environment for the conduct of scientific research for a variety of microgravity science disciplines. This paper reports to the microgravity scientific community the results of an initial characterization of the microgravity environment on the International Space Station for increments 2 through 4. During that period almost 70,000 hours of station operations and scientific experiments were conducted. 720 hours of crew research time were logged aboard the orbiting laboratory and over half a terabyte of acceleration data were recorded and much of that was analyzed. The results discussed in this paper cover both the quasi-steady and vibratory acceleration environment of the station during its first year of scientific operation. For the quasi-steady environment, results are presented and discussed for the following: the space station attitudes Torque Equilibrium Attitude and the X-Axis Perpendicular to the Orbital Plane; station docking attitude maneuvers; Space Shuttle joint operation with the station; cabin de-pressurizations and the station water dumps. For the vibratory environment, results are presented for the following: crew exercise, docking events, and the activation/de-activation of both station life support system hardware and experiment hardware. Finally, a grand summary of all the data collected aboard the station during the 1-year period is presented showing where the overall quasi-steady and vibratory acceleration magnitude levels fall over that period of time using a 95th percentile benchmark.  相似文献   

16.
For the European manned space activities an EVA space suit system was being developed in the frame of the Hermes Space Vehicle Programme of the European Space Agency (ESA). The space suit was to serve the needs for all relevant extravehicular activities for the Hermes Columbus operations planned to begin in 2004. For the present Russian manned space programme the relevant EVAs are performed by the Orlan-DMA semi-rigid space suit. The origin of its development reaches back to the 1970s and has since been adapted to cover the needs for extravehicular activities on Salyut and MIR until today. The latest modification of the space suit, which guaranteed its completely self-contained operation, was made in 1988. However, Russian specialists considered it necessary to start developing an EVA space suit of a new generation, which would have improved performance and would cover the needs by the turn of the century and into the beginning of the next century. Potentially these two suit developments could have a lot in common based on similarities in present concepts. As future manned space activities become more and more an international effort, a safe and reliable interoperability of the different space suit systems is required. Based on the results of the Munich Minister Conference in 1991, the European Space Agency and the Russian Space Agency agreed to initiate a requirements analysis and conceptual design study to determine the feasibility of a joint space suit development, EVA 2000. The design philosophy for the EVA 2000 study was oriented on a space suit system design of: space suit commonality and interoperability; increased crew productivity and safety; increase in useful life and reduced maintainability; reduced development and production cost. The EVA 2000 feasibility study was performed in 1992, and with the positive conclusions for EVA 2000, this approach became the new joint European Russian EVA Suit 2000 Development Programme. This paper gives an overview of the results of the feasibility study and presents the joint requirements and the proposed design concept of a jointly developed European Russian space suit.  相似文献   

17.
The European spacesuit system (ESSS) initiated by the European Space Agency (ESA) in the late 1980s had many similarities with the Soviet/Russian ORLAN spacesuit system, due to the Hermes system requirements. First, direct contacts in 1989 permitted closer comparison of the two suit systems, and soon the ORLAN manufacturer Zvezda could be contracted as support to the European spacesuit team. In particular, the suit enclosure design and predevelopment testing and operational analysis were performed in close cooperation between Zvezda and the European team under Dornier.

With the changing system requirements and a closer cooperation between ESA and the new Russian Space Agency (RKA) a new joint spaceplane/stations mission scenario came about. This scenario could be served by one spacesuit system, EVA SUIT 2000, which was to be jointly developed by a team headed by Zvezda and Dornier for ESA and RKA. ORLAN-DMA and ESSS experience and hardware were the initial platforms for these activities to create a new generation spacesuits for the Mir 2 and later the ISSs.

A suit demonstrator was manufactured and tested by the end of 1994 when ESA stopped its spacesuit development activities and the joint EVA SUIT 2000 project was terminated. However, many of the features designed, manufactured and tested for the EVA SUIT 2000 were then implemented by Zvezda in the new Russian spacesuit system ORLAN-M, now in full operation onboard the ISS.  相似文献   


18.
《Acta Astronautica》1987,15(9):703-706
The Mir station of new generation, that was inserted into the orbit on February 20, 1986, went through its systems check during the automatic and man-controlled modes of flight and entered into a new operation phase being permanently manned.The concept of modular space station with six docking units makes it possible to perform docking with manned spacecraft, cargo vehicles and specialized scientific modules, to increase its functional capabilities and to transform the station into a multipurpose permanent orbital complex. Technical capabilities for performing a wide range of experiments, including joint projects for international cooperation program are extended. The main principles that are realized in the new Mir station, as well as scientific problems that are solved during the station operation, are considered in the article.  相似文献   

19.
The development of protective suits for space use started with the Vostok-suit SK-1, first used by Yu. Gagarin on April 12, 1961, and then used on all subsequent Vostok-flights. The technical background for the design of these suits was the work on full pressure protective suits for military pilots and stratospheric flights in the 1930's through 50's. The Soviet-Russian space programme contains a large number of 'firsts', and one of the most well known is the first EVA by Leonov in 1965. This event is also the starting point for a long series of space suit development for Extravehicular Activities over the last 35 years. The next step to come was the transfer in void space of crew members between the two spacecraft Soyuz 4 and 5 in 1969. As has later become known this was an essential element in the planned Soviet lunar exploration programme, which in itself required a new space suit. After the termination of the lunar programme in 1972, the space suit development concentrated on suits applicable to zero-gravity work around the manned space stations Salyut 6, Salyut 7 and MIR. These suits have become known as the ORLAN-family of suits, and an advanced version of this suit (ORLAN-M) will be used on the International Space Station together with the American EMU. This paper covers the space suit development in the Soviet Union in the 1960's and the experience used from the pre-space era.  相似文献   

20.
《Acta Astronautica》2007,60(4-7):336-340
Individuals who adapt positively to an inhospitable or extreme environment can derive benefit from their experiences. This positive effect may include an initial improvement in mental health as someone adjusts to the environment (adaptation) as well as more sustained personal growth during the mission (salutogenesis). We review relevant findings from our prior work, including two post-mission surveys of astronauts and cosmonauts, and three studies of crewmembers during missions in a space station simulator, the Mir space station, and the International Space Station (ISS). We also present new analyses showing evidence for adaptation to ISS missions. This finding replicates our previous results from the simulation study, but this effect was not found on the Mir. A better understanding of psychological adaptation and salutogenesis during space flight should help us develop strategies to enhance crewmembers’ in-flight stress tolerance and post-flight adjustment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号