共查询到20条相似文献,搜索用时 0 毫秒
1.
A I Skoog 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1987,7(4):3-6
The European CELSS activities started in the late 1970's with system analysis and feasibility studies of Biological Life Support Systems (BLSS). Since then the European efforts have continued in two major directions: as a series of individual development tasks like the Environmental Life Support System and the Solar Plant Growth Facility, and in parallel hereto as overall coordination and planning activities for life support system long term needs definition and payload definition for COLUMBUS utilization. The early initiations for CELSS came from the industry side in Europe, but since then planning and hardware feasibility analyses have been initiated also from customer/agency side. Despite this, it is still to early to state that a "CELSS-programme" as a "concerted" effort has been agreed upon in Europe. However, the general CELSS objectives have been accepted as planning and possible development goals for the European effort for manned space activities, and as experimental planning topics in the life sciences community for the next decades. 相似文献
2.
F Guerrin K Bousson L Steyer JPhTrave-Massuyes 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(11):307-312
Qualitative Reasoning (QR) is a branch of Artificial Intelligence that arose from research on engineering problem solving. This paper describes the major QR methods and techniques, which, we believe, are capable of addressing some of the problems that are emphasized in the literature and posed by CELSS modeling, simulation, and control at the supervisory level. 相似文献
3.
F Salisbury L Gillespie G Bingham 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(11):21-27
We are planning a short-term experiment with Superdwarf wheat on the U.S. Space Shuttle and a seed-to-seed experiment on the Russian Space Station Mir. The goals of both experiments are to observe effects of microgravity on developmental steps in the life cycle and to measure photosynthesis, respiration, and transpiration by monitoring gas exchange. This requires somewhat different hardware development for the two experiments. Ground-based research aims to understand plant responses to the environments in the space growth chambers that we will use (after some modification): the Plant Growth Unit (PGU) on the shuttle and units called Svet, Svetoblock 2, or Oasis on Mir. Low irradiance levels (100 to 250 micromoles m-2 s-1 at best) pose a particular problem. Water and nutrient supply are also potentially limiting factors, especially in the long-term experiment. Our ground-based studies emphasize responses to low light levels (50 to 400 micromoles m-2 s-1); results show that all developmental steps are delayed by low light compared with plants at 400 micromoles m-2 s-1. We are also testing various rooting substrates for the shuttle experiment. A 1:1:1 mixture of peat:perlite:vermiculite appears to be the best choice. 相似文献
4.
A Ashida 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(11):177-187
Recycle of complete nourishment necessary for human should be constructed in CELSS (Controlled Ecological Life Support Systems). Essential elements necessary for human support are categorized as major elements, semi-major elements and trace elements. Recently, trace elements have been identified from considerations of local diseases, food additive problems, pollution problems and adult diseases, consisting of Fe, Zn, Cu, Se, Co, F, Si, Mn, Cr, I, As, Mo, Ni, V, Sn, Li, Br, Cd, Pb, B. A review of the biogeochemical history of the earth's biosphere and the physiological nature of humans and plants explains some of the requirements. A possible route for intake of trace elements is considered that trace elements are dissolved in some chemical form in water, absorbed by plants through their roots and then transfered to human as foods. There may be a possibility that living things absorb some trace elements from atmosphere. Management and recycling of trace elements in CELSS is discussed. 相似文献
5.
I Nishi T Tateishi G Tomizawa K Nitta M Oguchi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1987,7(4):77-80
A mass spectrometer and computer system was developed for conducting a fundamental study on gas monitoring in CELSS. Respiration and metabolism of the hamster and photosynthesis of the Spirulina were measured in a combination system consisting of a hamster chamber and a Spirulina cultivator. They are connected through a membrane gas exchanger. Some technical problems were examined. In the mass spectrometric gas monitoring, a simultaneous multi-sample measurement was developed by employing a rotating exchange valve. Long term precise measurement was obtained by employing an automatic calibration system. The membrane gas sampling probe proved to be useful for long term measurement. The cultivation rate of the Spirulina was effectively changed by controlling CO2 and light supply. The experimental results are helpful for improving the hamster-spirulina system. 相似文献
6.
T W Tibbitts S M Bennett R C Morrow R J Bula 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1989,9(8):53-59
Potatoes (Solanum tuberosum) have a strong potential as a useful crop species in a functioning CELSS. The cultivar Denali has produced 37.5 g m-2 d-1 when grown for 132 days with the first 40 days under a 12-h photoperiod and a light:dark temperature cycle of 20 degrees C:16 degrees C, and then 92 days under continuous irradiance and a temperature of 16 degrees C. Irradiance was at 725 micromoles m-2 s-1 PPF and carbon dioxide at 1000 micromoles mol-1. The dried tubers had 82% carbohydrates, 9% protein and 0.6% fat. Other studies have shown that carbon dioxide supplementation (1000 micromoles mol-1) is of significant benefit under 12-h irradiance but less benefit under 24 h irradiance. Irradiance cycles of 60 minutes light and 30 minutes dark caused a reduction of more than 50% in tuber weight compared to cycles of 16 h light and 8 h dark. A diurnal temperature change of 22 degrees C for the 12-h light period to 14 degrees C during the 12-h dark period gave increased yields of 30% and 10% for two separate cultivars, compared with plants grown under a constant 18 degrees C temperature. Cultivar screening under continuous irradiance and elevated temperatures (28 degrees C) for 8 weeks of growth indicated that the cvs Haig, Denali, Atlantic, Desiree and Rutt had the best potential for tolerance to these conditions. Harvesting of tubers from plants at weekly intervals, beginning at 8 weeks after planting, did not increase yield over a single final harvest. Spacing of plants on 0.055 centers produced greater yield per m2 than spacing at 0.11 or 0.22 m2. Plants maintained 0.33 meters apart (0.111 m2 per plant) in beds produced the same yields when separated by dividers in the root matrix as when no separation was made. 相似文献
7.
M Oguchi K Nitta 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1992,12(5):21-27
A wet oxidation is considered to be one of the most effective methods of waste processing and recycling in CELSS (Controlled Ecological Life Support System). The first test using rabbit waste as raw material was conducted under a decomposition temperature of 280 degrees C for 30 minutes and an initial pure oxygen pressure of 4.9 MPa (50 kgf/cm2) before heating, and the following results were obtained. The value of COD (Chemical Oxygen Demand) was reduced 82.5% by the wet oxidation. And also the Kjeldahl nitrogen concentration was decreased 98.8%. However, the organic carbon compound in the residual solution was almost acetic acid and ammonia was produced. In order to activate the oxidation more strongly, the second tests using catalysts such as Pd, Ru and Ru+Rh were conducted. As the results of these tests, the effectiveness of catalysts for oxidizing raw material was shown as follows: COD and the Kjeldahl nitrogen values were drastically decreased 99.65% and 99.88%, respectively. Furthermore, the quantity of acetic acid and ammonia were reduced considerably. On the other hand, nitrate was showed a value 30 times as much as without catalytic oxidation. 相似文献
8.
R J Sirko G C Smith L A Hamlin R Tazawa T Uchida S Suzuki 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(11):105-112
This paper describes the conceptual development of a hybrid biological-physical/chemical (P/C) life support system model for a lunar outpost. It presents steps that lead to loop closure and determines mass flow characteristics for an inedible biomass enzyme reactor and an activated sludge bioreactor. Computer modeling techniques were used to determine that the cellulose reactor has the design capabilities to provide significant increases in the plant harvest index. Activated sludge was found to fit design demands for a small, continuous-flow, steady-state system. Systems analysis and component sizing for these two bioreactors and information regarding supporting bioregenerative and physical/chemical components are presented. 相似文献
9.
S I Bartsev 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,31(7):1675-1682
The term Closed Ecological System (CES) is in wide use. However there is no generally accepted measure of the closure of ecological systems. In order to obtain reproducibility of experiments with natural and man-made CES (with respect to degree of closure) some universal estimate needs to be developed. Understanding ecological systems as a network and closure as the degree of matter recycling allows the use of matrix graphs. Graphs are very natural forms for the presentation of the network of matter flows in ecosystems. An estimate equal to the sum of products of weights of oriented edges that constitute contour is suggested as a measure of the degree of closure in ecosystems. It is shown that this estimate can be uniformly applied to ecosystems of arbitrary size and configuration of flows. 相似文献
10.
T Wydeven J Tremor C Koo R Jacquez 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1989,9(8):85-97
The production rate and solid content of waste streams found in a life support system for a space habitat (in which plants are grown for food) are discussed. Two recycling scenarios, derived from qualitative considerations as opposed to quantitative mass and energy balances, tradeoff studies, etc., are presented; they reflect differing emphases on and responses to the waste stream formation rates and their composition, as well as indicate the required products from waste treatment that are needed in a life support system. The data presented demonstrate the magnitude of the challenge to developing a life support system for a space habitat requiring a high degree of closure. 相似文献
11.
C Greene D L Bubenheim K Wignarajah 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1997,20(10):1949-1958
Plant-microbe interactions, such as those of the rhizosphere, may be ideally suited for recycling water in a Controlled Ecological Life Support System (CELSS). The primary contaminant of waste hygiene water will be surfactants or soaps. We identified changes in the microbial ecology in the rhizosphere of hydroponical1y grown lettuce during exposure to surfactant. Six week old lettuce plants were transferred into a chamber with a recirculating hydroponic system. Microbial density and population composition were determined for the nutrient solution prior to introduction of plants and then again with plants prior to surfactant addition. The surfactant Igepon was added to the recirculating nutrient solution to a final concentration of 1.0 g L-1. Bacteria density and species diversity of the solution were monitored over a 72-h period following introduction of Igepon. Nine distinct bacterial types were identified in the rhisosphere; three species accounted for 87% of the normal rhizosphere population. Microbial cell number increased in the presence of Igepon, however species diversity declined. At the point when Igepon was degraded from solution, diversity was reduced to only two species. Igepon was found to be degraded directly by only one species found in the rhizosphere. Since surfactants are degraded from the waste hygiene water within 24 h, the potential for using rhizosphere bacteria as a waste processor in a CELSS is promising. 相似文献
12.
C L Mackowiak R M Wheeler G W Stutte N C Yorio J C Sager 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1997,20(10):1815-1820
Plant-derived nutrients were successfully recycled in a Controlled Ecological Life Support System (CELSS) using biological methods. The majority of the essential nutrients were recovered by microbiologically treating the plant biomass in an aerobic bioreactor. Liquid effluent containing the nutrients was then returned to the biomass production component via a recirculating hydroponic system. Potato (Solanum tuberosum L.) cv. Norland plants were grown on those nutrients in either a batch production mode (same age plants on a nutrient solution) or a staggered production mode (4 different ages of plants on a nutrient solution). The study continued over a period of 418 days, within NASA Breadboard Project's Biomass Production Chamber at the Kennedy Space Center. During this period, four consecutive batch cycles (104-day harvests) and 13 consecutive staggered cycles (26-day harvests) were completed using reclaimed minerals and compared to plants grown with standard nutrient solutions. All nutrient solutions were continually recirculated during the entire 418 day study. In general, tuber yields with reclaimed minerals were within 10% of control solutions. Contaminants, such as sodium and recalcitrant organics tended to increase over time in solutions containing reclaimed minerals, however tuber composition was comparable to tubers grown in the control solutions. 相似文献
13.
R D MacElroy J Bredt 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,4(12):221-229
Studies of bioregenerative life support systems for use in space indicate that they are scientifically feasible. Preliminary data suggest that they would provide cost- and weight-saving benefits for low Earth orbit, long duration space platforms. Concepts of such systems include the use of higher plants and/or micro-algae as sources of food, potable water and oxygen, and as sinks for carbon dioxide and metabolic wastes. Recycling of materials within the system will require processing of food organism and crew wastes using microbiological and/or physical chemical techniques. The dynamics of material flow within the system will require monitoring, control, stabilization and maintenance imposed by computers. Future phases of study will continue investigations of higher plant and algal physiology, environmental responses, and control; flight experiments for testing responses of organisms to weightlessness and increased radiation levels; and development of ground-based facilities for the study of recycling within a bioregenerative life support system. 相似文献
14.
K Wignarajah D L Bubenheim 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1997,20(10):1833-1843
Lettuce plants were grown utilizing water, inorganic elements, and CO2 inputs recovered from waste streams. The impact of these waste-derived inputs on the growth of lettuce was quantified and compared with results obtained when reagent grade inputs were used. Phytotoxicity was evident in both the untreated wastewater stream and the recovered CO2 stream. The toxicity of surfactants in wastewater was removed using several treatment systems. Harmful effects of gaseous products resulting from incineration of inedible biomass on crop growth were observed. No phytotoxicity was observed when inorganic elements recovered from incinerated biomass ash were used to prepare the hydroponic solution, but the balance of nutrients had to be modified to achieve near optimal growth. The results were used to evaluate closure potential of water and inorganic elemental loops for integrated plant growth and human requirements. 相似文献
15.
T Fujii Y Midorikawa M Shiba M Terai K Omasa K Nitta 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1992,12(5):29-32
For the Closed Ecological Life Support System (CELSS) of a manned lunar base which is planned to be built on the moon early in the 21st century, several proposed programs exist to grow vegetables inside a farming module. At the 40th IAF (Malaga, 1989) the author et al presented a proposal for supplying food and nutrients to a crew of eight members, a basic concept which is based on growing four kinds of vegetables. This paper describes measures for biohazard protection in farming modules. In this study, biohazard protection means prevention of the dispersion of plant diseases to other plant species or other portions of farming beds. 相似文献
16.
M Hughes-Fulford H W Scheld 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1989,9(11):111-117
Studies from the Skylab, SL-3 and D-1 missions have demonstrated that biological organisms grown in microgravity have changes in basic cellular functions such as DNA, mRNA and protein synthesis, cytoskeleton synthesis, glucose utilization and cellular differentiation. Since microgravity could affect prokaryotic and eukaryotic cells at a subcellular and molecular level, space offers us an opportunity to learn more about basic biological systems with one important variable removed. The thin film bioreactor will facilitate the handling of fluids in microgravity, under constant temperature and will allow multiple samples of cells to be grown with variable conditions. Studies on cell cultures grown in microgravity would enable us to identify and quantify changes in basic biological function in microgravity which are needed to develop new applications of orbital research and future biotechnology. 相似文献
17.
M Oguchi K Otsubo K Nitta A Shimada S Fujii T Koyano K Miki 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1989,9(8):169-177
In CELSS (Controlled Ecological Life Support System), utilization of photosynthetic algae is an effective means for obtaining food and oxygen at the same time. We have chosen Spirulina, a blue-green alga, and have studied possibilities of algae utilization. We have developed an advanced algae cultivation system, which is able to produce algae continuously in a closed condition. Major features of the new system are as follows. (1) In order to maintain homogeneous culture conditions, the cultivator was designed so as to cause a swirl on medium circulation. (2) Oxygen gas separation and carbon dioxide supply are conducted by a newly designed membrane module. (3) Algae mass and medium are separated by a specially designed harvester. (4) Cultivation conditions, such as pH, temperature, algae growth rate, light intensity and quantity of generated oxygen gas are controlled by a computer system and the data are automatically recorded. This equipment is a primary model for ground experiments in order to obtain some design data for space use. A feasibility of algae cultivation in a closed condition is discussed on the basis of data obtained by use of this new system. 相似文献
18.
The Breadboard Project: a functioning CELSS plant growth system. 总被引:1,自引:0,他引:1
W M Knott 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1992,12(5):45-52
The primary objective of the Breadboard project for the next 3-4 years is to develop, integrate and operate a Controlled Ecological Life Support System (CELSS) at a one person scale. The focus of this project over the past two years has been the development of the plant growth facility, the first module of the CELSS. The other major modules, food preparation, biomass processing, and resource recovery, have been researched at the laboratory scale during the past two years and facilities are currently under construction to scale-up these modules to an operational state. This paper will outline the design requirements for the Biomass Production Chamber (BPC), the plant growth facility for the project, and the control and monitoring subsystems which operate the chamber and will present results from both engineering and biological tests of the facility. Three production evaluations of wheat, conducted in the BPC during the past year, will be described and the data generated from these tests discussed. Future plans for the BPC will be presented along with future goals for the project as the other modules become active. 相似文献
19.
S I Bartsev V V Mezhevikin V A Okhonin 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1996,18(1-2):201-204
Any attempt to create LSS for practical applications must take into account the possibility of castastrophic consequences if the problem of LSS reliability and stability is not solved. An integrated conception of CELSS studies development as a possible way to increase its reliability is considered. The BIOS-4 facility project is developed in the context of the conception. Three principles of highly effective experimental CELSS facility design are proposed. Some details of BIOS-4 design and its exploitation features are presented. 相似文献
20.
Y Takahashi T Wydeven C Koo 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1989,9(8):99-110
Controlled-Ecological-Life-Support-System (CELSS) model wastes were wet-oxidized at temperatures from 250 to 500 degrees C, i.e., below and above the critical point of water (374 degrees C and 218 kg/cm2 or 21.4 MPa). A solution of ammonium hydroxide and acetic acid and a slurry of human urine, feces, and wipes were used as model wastes. Almost all of the organic matter in the model wastes was oxidized in the temperature range from 400 to 500 degrees C, i.e., above the critical conditions for water. In contrast, only a small portion of the organic matter was oxidized at subcritical conditions. Although the extent of nitrogen oxidation to nitrous oxide (N2O) and/or nitrogen gas (N2) increased with reaction temperature, most of the nitrogen was retained in solution as ammonia near 400 degrees C. This important finding suggests that most of the nitrogen in the waste feed can be retained in solution as ammonia during oxidation at low supercritical temperatures and be subsequently used as a nitrogen source for plants in a CELSS while at the same time organic matter is almost completely oxidized to carbon dioxide and water. It was also found in this study the Hastelloy C-276 alloy reactor corroded during waste oxidation. The rate of corrosion was lower above than below the critical temperature for water. 相似文献