首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cost of ownership of avionics includes not only the development and acquisition cost, but also the yearly operating and support (O and S) (maintenance) cost of hardware, software, and support equipment. This paper presents an avionics cost of ownership methodology developed for USAF, its data sources, and business metrics computed for USAF decision makers as we move toward operating avionics as a business. The business model is used to determine which existing avionics are candidates for replacement with new technology and to prioritize the replacements. These avionics are often used on multiple aircraft types which necessitates analysis of the causes of the high cost of ownership on each type. Databases are used to document the processing functions, data flow, and constraints of the item being analyzed. These constraints include physical, environmental, electrical, and data interfaces. Databases containing alternatives are evaluated against standard mission scenarios for aircraft utilizing these high cost avionics to determine their impact on performance, O and S costs, and mission effectiveness. The results of the foregoing analyses steps are then used in life cycle cost analyses which consider different retrofit scenarios for each alternative for each aircraft type against the avionics being analyzed for replacement. The alternatives are prioritized and a risk analysis performed considering technical, schedule, and cost growth risks. The avionics cost of ownership methodology described in this paper processes data from USAF maintenance organizations. This has revealed the very large expenditures being made to support highly unreliable avionics. These methods can be applied to all military and commercial aircraft systems to determine not only the cost of ownership of existing systems, but also the cost of ownership of new systems when they are retrofit  相似文献   

2.
High performance communications, navigation, and identification (CNI) functions on modern military aircraft are increasingly required for mission readiness. The operation of simultaneous waveforms through an integrated avionics rack of shared resources becomes a test in moving data rapidly from one signal processing stage to the next. The IEEE 1394, or Firewire, is a commercial high bandwidth bus whose 64-bit addressing and maximum 400 Mbits/second throughput satisfies this demanding military avionics interconnect need. The challenge in applying this commercial product to integrated avionics is the requirement to seamlessly add message priority encoding. By having message priorities, the slower strategic communications links will not impair the performance of higher data rate tactical communications, thereby avoiding potentially life-threatening bottlenecks. The flight environment imposes additional challenges to ruggedize the cabling between integrated avionics racks and to utilize the full capabilities of the Firewire bus. A discussion of the physical, data link, network, and transport layers, as used in avionics applications will be done. Additionally, the versatility of 1394 in military avionics with its variable channel sizes, bandwidth on demand, hierarchical addressing, and upgrade to 800 and 1600 Mbps with a 64-bit wide data path, is emphasized. Finally, system maintenance advantages of 1394's hot pluggable features are discussed, with an eye toward cost reduction on the flight line and total operational time of the aircraft avionics systems  相似文献   

3.
The PAVE PACE Initiative has been established to validate system avionics concepts for advanced military aircraft. The author presents the rationale of why the advanced architecture established by the PAVE PILLAR program should be continued under PAVE PACE to achieve: practical and affordable airborne versions of modular parallel processing network architectures for many applications currently beyond real-time implementation, readily available avionics for use in all avionics and, greatly improved techniques to reduce the cost of software development and support. An approach to the overall design structure for future avionics is also presented that entails: the use of CAD (computer-aided design) tools to assist in the development of system, hardware and software requirements, the use of replicated hardware modules (some at the wafer level), the use of reuseable software modules and the use of CAD tools to tailor hardware/software modules for specific application requirements. Continued use of the PAVE PILLAR high-speed data bus and operating system is recommended as the means to integrate and control the data input and output of physically and functionally separate parallel networks  相似文献   

4.
综合化飞机环境监视系统研究及其数字仿真测试   总被引:1,自引:0,他引:1  
肖刚  敬忠良  李元祥  刁海南  于超鹏 《航空学报》2012,33(12):2279-2290
综合模块化航空电子(IMA)技术日益成为飞机航电系统开发的主流构型。基于美国航空无线电技术委员会(RTCA)对飞机环境监视系统(AESS)的定义,分析了AESS的发展过程及技术趋势,以空客A380、Boeing787飞机的AESS为例进行现状分析,依据ARINC768规范开展了综合飞机环境监视系统(IAESS)方案及架构设计,实现了由综合飞机环境监视系统处理单元(IAESSPU)对T3CAS(TCAS、TAWS和ATCRBS)和WXR数据综合与处理的统一,开展了基于高级体系结构(HLA)的IAESS数字仿真系统设计、测试用例和性能分析,验证了IAESS具有高可靠性、低功耗、低总量等优点,未来IAESS发展也将进一步使得系统具备多功能特点。  相似文献   

5.
由单芯片封装器件构成的系统越来越不能满足航电设备用户求,而片上系统(SOC)设计目前尚不能真正实现系统集成。封装内系统技术能以较低成本投入换来尺寸的大幅减小、重量大幅减轻、封装效率提高、电气特性提升、功耗降低及可靠性提高等等优势,综合性能得到大大提升,是性价比很高的技术。  相似文献   

6.
Replacement strategy for aging avionics computers   总被引:1,自引:0,他引:1  
With decreasing defense dollars available to purchase new military aircraft, the inventory of existing aircraft will have to last many more years than originally anticipated. As the avionics computers on these aging aircraft get older, they become more expensive to maintain due to parts obsolescence. In addition, expanding missions and changing requirements lead to growth in the embedded software which, in turn, requires additional processing and memory capacity. Both factors, parts obsolescence and new processing capacity, result in the need to replace the old computer hardware with newer, more capable microprocessor technology. New microprocessors, however, are not compatible with the older computer instruction set architectures. This generally requires the embedded software in these computers to be rewritten. A significant savings-estimated in the billions of dollars-could be achieved in these upgrades if the new computers could execute the old embedded code along with any new code to be added. This paper describes a commercial-off-the-shelf (COTS)-based form, fit, function, and interface (F3I) replacement strategy for legacy avionics computers that can reuse existing avionics code “as is” while providing a flexible framework for incremental upgrades and managed change. It is based on a real-time embedded software technology that executes legacy binary code on the latest generation COTS microprocessors. This technology promises performance improvements of 5-10 times that of the legacy avionics computer that it replaces. It also promises a 4× decrease in cost and schedule over rewriting the code and provides a “known good” starting point for incremental upgrades of the embedded flight software. Code revalidation cost and risk are minimized since the structure of the embedded code is not changed, allowing the replacement computer to be retested at the “blackbox” level using existing qualification tests  相似文献   

7.
先进座舱显示系统要求新一代机载图形引擎必须在具备较强图形实时渲染性能的同时,满足可靠性、可扩展性等航空产品的特定需求。本文分析了传统机载图形引擎实现技术的局限性,给出了基于IP核的可扩展机载图形引擎架构及设计实现。这种图形引擎在图形渲染性能和可靠性、可扩展性等之间取得平衡,支持基于模型的图形软件开发,同时满足成本控制和长生命周期支持等需求。  相似文献   

8.
An overview of military avionics data buses and their applications, with the emphasis on optical fiber networking techniques. The evolution of military avionics data buses is discussed. The development trend actually reflects an increasing demand on such data buses, which requires the change from low-speed to high-speed transmissions, from single-rate to dual-rate operations, and from centralized control to distributed control. Recent progress in military avionics networks is described.  相似文献   

9.
The avionics components of modern military aircraft significantly impact the cost and effectiveness of the total aeronautical system. In the early conceptual phase, aeronautical system designers give scant attention to designing the avionics components. The design team generally provides weight, volume and power considerations for the desired avionics functions and assumes that an avionics suite can be assembled. Less than comprehensive attention is given to the interacting effect avionics have with the other system components. In contrast, the designers expend a very large effort on finding the best balanced combination of airframe and propulsion components which satisfy the design objectives. This paper shows why avionics must be a co-equal member of the aeronautical system along with airframe, propulsion, and armament. To become a co-equal partner, avionics must be an element of the system design iterations and analysis commencing with the early conceptual design phase of a new aeronautical system.  相似文献   

10.
 航空电子系统的费用 效能是飞机总体系统效能的重要组成部分,也是降低飞机寿命周期费用的关键之一。在航空电子系统的总体设计阶段,传统的系统评估和优化方法主要针对的是独立子系统/设备的费用或效能指标。综合航电系统设计方案的费用 效能重要指标包括:可支付性、构型能力、任务能力、可靠性、维修性、测试性和技术风险,以组合的方式获得了相应的综合评估准则,给出了计算公式。以某新研航电系统作为实例演示了综合评估方法的实施情况,演示的重点集中于总体设计方案的可视化量化评估分析。该综合评估方法已显示出其在实际工程设计中的可行性和应用价值。  相似文献   

11.
军机LRM及其关键技术研究   总被引:1,自引:0,他引:1  
LRM(外场可更换模块)是第四代军机航电系统的主要特征,对于提高军机战备完好性和降低其全寿命周期费用有着重要意义.分析了航电系统传统结构的不足,指出了基于LRM结构的航电系统的优点,阐述了LRM的设计要求及现有标准,并深入研究了其关键技术,以便为我军新机设计提供参考.  相似文献   

12.
This paper is a proposal for a future method of avionics data communication. The need for this proposal results from the shortcomings in the current avionics architecture, video distribution network, and in the MIL-STD-1553 data communication system. The separately wired video and data communication systems can be combined to save weight, which is especially critical for rotorcraft. Aircraft, once fielded, have limited capacity for modification and improvement due to fixed computer throughput and processing performance, network bandwidth, and space available in the avionics equipment bays. The changes proposed by this paper are to be made in conjunction with the replacement of the redundant computer boxes with open system avionics functions on industry standard circuit cards. This open architecture approach was developed over the last ten years and is now being implemented in many aircraft applications including the F-22 and the RAH-66 programs. The V-22 rotorcraft, which although just entering production, is being modified for joint service customers where modern computer performance and expanded data network bandwidth is needed. The changes of this proposal will fill this need, reduce the weight of upcoming production models, and provide growth or spare capability so that additional video and data components can be added with minimal effect on existing components. This paper examines the current V-22 avionics video and data communication hardware and wiring and propose a new implementation of open system architecture standards with integrated digital video and data communication based on ANSI standard copper fibre channel  相似文献   

13.
A smart system that uses state-of-the-art image processing techniques to detect and track targets moving in video or infrared imagery is presented. It is a general-purpose system that was developed to be independent of the application and the user interface. TCATS has successfully demonstrated a high detection capability and the ability to ignore exterior environmental conditions, such as cloud shadows moving through the scene, snow, blowing dust, rain and moderate camera motion. TCATS can handle many targets and retain the identity of each object from one frame to the next. Special rugged hardware has been developed to reduce the size, cost, and power consumption and to increase the processing rate, reliability, and environmental operating capability of the system. TCATS can be incorporated into an existing video assessment system without a major cost outlay intruder. The TCATS algorithms, custom-developed hardware, and preliminary field test results are described  相似文献   

14.
《中国航空学报》2022,35(9):19-34
Unmanned Aerial Vehicles (UAVs) have received a wide range of attention for military and commercial applications. Enhanced with communication capability, UAVs are considered to play important roles in the Sixth Generation (6G) networks due to their low cost and flexible deployment. 6G is supposed to be an all-coverage network to provide ubiquitous connections for space, air, ground and underwater. UAVs are able to provide air-borne wireless coverage flexibly, serving as aerial base stations for ground users, as relays to connect isolated nodes, or as mobile users in cellular networks. However, the onboard energy of small UAVs is extremely limited. Thus, UAVs can be only deployed to establish wireless links temporarily. Prolonging the lifetime and developing green UAV communication with low power consumption becomes a critical challenge. In this article, a comprehensive survey on green UAV communications for 6G is carried out. Specifically, the typical UAVs and their energy consumption models are introduced. Then, the typical trends of green UAV communications are provided. In addition, the typical applications of UAVs and their green designs are discussed. Finally, several promising techniques and open research issues are also pointed out.  相似文献   

15.
Successful technology insertion programs must satisfy many system constraints in order to incorporate new capabilities into aging avionics systems while meeting program cost requirements. Such constraints frequently include form, fit, and functional replacement specifications, as well as power and electrical performance restrictions. This paper describes a technology insertion program undertaken with the goal of replacing the 30-year-old azimuth indicator display of a radar warning receiver system. This necessitated the use of electroluminescent (EL) display technology to replace the analog cathode ray tube display currently used in the system. Because of the prohibitively high cost of aircraft wiring modifications, the replacement display was required to be completely form, fit, and functionally equivalent to its replacement. The form, fit, and functional equivalency requirement imposed the following system constraints: (1) power consumption of less than 10 Watts; (2) the need to maintain the same stroke-deflection current electrical interface; and (3) the need to meet the maintenance and repair budget of the existing display unit. Additional requirements included night-vision compatibility and full sunlight readability. The display was also required to be MIL-STD-1553 Remote Terminal communication capable. All requirements posed a challenging technology insertion problem to program personnel. The case study described in this paper illustrates the approach to meeting the particular requirements of this technology insertion program  相似文献   

16.
Work is ongoing at NAVAIR to understand how avionics fiber optic BIT technology can help reduce military aviation platform fiber optic network life cycle and total ownership cost. Operational availability enhancements via comprehensive supportability programs combined with keen attentiveness to reliability and maintainability metrics are driving the avionics fiber optic BIT value proposition. Avionics fiber optic BIT technology is expected to reduce failure rate and mean time to repair by predicting link failure before link failure actually occurs, running post-maintenance stress screening upon aircraft start-up, improving fault isolation by reducing the troubleshooting ambiguity zone from three to one, and reducing the need for separate support equipment for system troubleshooting  相似文献   

17.
先进复合材料结构RTM技术现状及发展   总被引:7,自引:0,他引:7  
树脂转移模塑工艺(RTM)产生以来,以其经济性优势开始替代热压罐的成形方法,RTM技术可生产高质量,具有复杂外形,低成本的产品,本文阐述了RTM技术在宇航工业材料,设备及应用上的发展,并对RTM技术进行了概述,建立了流动模型。  相似文献   

18.
为了分析涡轮级间燃烧技术对常规涡轴发动机性能提升的潜力,针对两种带级间燃烧的涡轴发动机性能方案,分别建立了部件级稳态性能计算模型,并通过仿真对比分析了级间燃烧室不同温升及总压损失条件下发动机的整机性能,结果表明:级间燃烧室总压恢复系数和温升对单位功率和总功率影响较大,当级间燃烧室总压恢复系数为0.95、温升为200K时,保持进口空气流量不变,涡轴发动机单位功率和总功率增加17%,耗油率增加约11%;在高的级间燃烧室温升条件下,适当增加动力涡轮导向器面积,改善涡轮流通能力,有利于进一步提高整机功率,降低动力涡轮前温度;两种方案对比,在涡轮过渡段设置级间燃烧室空间上更好布置,性能上更占优势.   相似文献   

19.
随着航空电子系统承载的应用日趋复杂,飞机对机载计算机的计算力和功耗比要求不断提升,这也推动了嵌入式多核处理器的加速应用和普及。多核处理器在航空电子设备的深入应用,随之而来的是运行其上的软件复杂度急剧上升,面向应用的航电系统设计面临挑战。多核处理器平台由于需要面对并行、指令乱序、资源共享冲突等问题,而目前国内大多数机载嵌入式软件和驱动仍然是基于单核处理器设计和实现的,影响最大的是在机载嵌入式实时操作系统环境下的驱动软件,因此需要充分考虑多核带来的各方面影响,尤其是需要兼顾共享内存等资源的使用冲突和实时高效要求。本文结合机载航电多核处理平台的特点,提出了一种基于机载多核弱序存储模型的共享内存驱动软件设计方法,并基于该方法设计了FC总线驱动和MBI总线驱动,项目应用结果表明,设计的驱动程序在多核处理器平台上数据传输正确,验证了方法的正确性和有效性。  相似文献   

20.
The V-22 avionic hardware is the first to be designed under MIL-STD-2165 testability program requirements. This paper presents an overview of the avionics design-for-testability approach and lessons learned to date relative to the application of MIL-STD-2165. The paper will discuss incorporation of testability requirements up front in the avionics design which will drive the supportability philosophy at both the Organizational and Depot levels of maintenance. The paper will compare previous avionics hardware testability requirements versus those applied to the V-22 avionics and highlight areas of improvement. A discussion of testability design impacts on reduced level of testing (i.e. WRA/SRA/System) will be included. In addition, the paper discusses an innovative approach to meeting the user requirements for a man-portable forward deployed maintenance capability that forms the basis for a two level support scenario (Organizational and Depot). The innovation comes from the fact that the on-board Central Integrated Checkout system will provide data as well as fault isolation and will use this data as a mechanism to reduce the size and complexity of the stimulus and measurement hardware at either the Organizational or Depot level depending on the deployment requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号