首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
着重介绍了测量系统的工作原理、主要技术关键及其解决途径。同时,对系统的使用效果、技术水平水做了评价。文中介绍的数据采集技术、屏蔽接地技术、PSK 信号长线传输技术、高频补偿网络设计方法以及测量系统的可靠性设计、抗干扰设计等均属首次应用,并在核效应现场测量中获得成功。这些技术成果有一定的推广使用价值。  相似文献   

2.
开发一种在生产条件下测量表面粗糙度的新方法。该方法利用基于微机的显示系统分析表面散射光的图形,导出粗糙度参数。已得到被研磨成各种粗糙度的工具钢样品的粗糙度参数。通过绘制粗糙度参数与用触针仪器获得的相应平均表面粗糙度读数的图形确定相关曲线。  相似文献   

3.
在全球信息技术革命的浪潮中,计算机网络起着重要作用。本文对该技术发展的现状和存在的问题作了分析,指出:尽管困难很多,我国仍须顺潮流而动,与国际上接轨,迎接新世纪的到来。  相似文献   

4.
针对因缺少空间非合作大目标的全局特征而难以实现相对位姿测量的问题,提出利用点状光源与单目光学相机组成点结构光视觉测量系统进行特征重构与位姿测量的方法。以非合作大目标上尺寸未知的局部矩形特征为测量对象,首先建立点结构光视觉测量系统相对位姿测量模型;接着利用相对约束关系给出特征重构方法并获得隐性特征点;然后利用特征点计算测量系统与非合作大目标之间的相对转移矩阵得到相对位置和姿态。通过数字仿真校验该方法的有效性并对测量误差因素进行分析,仿真结果表明该测量方法是有效的。  相似文献   

5.
为了提高电离层虚高测量精度,介绍了利用电离层回波相位实现高精度虚高测量的方法,并以CADI(Canadian Advanced Digital Ionosonde)电离层数字测高仪为研究平台,进行组合脉冲控制和回波相位测量分析,开展了一系列虚高测量实验,并与传统的利用回波时间延迟的虚高测量方法进行了分析比较.实验结果表明,基于回波相位的测量分析方法与回波时延测量分析方法相比,其虚高测量精度高一个量级以上,这对精确反演电离层峰下电子浓度剖面及研究电离层精细结构具有重要意义.   相似文献   

6.
分析对比了空间目标与可控飞行器轨道确定的不同,论述了太阳翼定向模式的不同对轨道运动特性的影响。通过地面站的测距与测角数据,推算出测量数据的地心距频谱。假定一种太阳翼定向模式,利用测量数据进行轨道确定,利用定轨数据计算地心距频谱并与测量数据的频谱比对,由此可确定太阳翼定向模式。利用数值仿真对近地太阳同步轨道和地球静止轨道两种情况进行了验证,仿真结果表明该思路和方法是有效的。  相似文献   

7.
针对传统的前向小角散射粒径测量系统中心光过强、杂散光干扰、散射角过小等缺点,本文采用一种新型的近场散射(NFS)方法测量前向小角散射光,研究并搭建了基于近场散射的颗粒粒径测量系统,将最大散射角提高到40.5°;在无需空白测量的情况下采用差分方法对透射光和散射光干涉成的散斑图像进行处理,有效去除中心光和杂散光的影响;对差分散斑图像进行快速傅里叶变换(FFT)频谱处理得到散射光强分布,利用Chahine算法对颗粒粒径进行了反演。最后,利用已知粒径(39.2μm和67.3μm)的标准颗粒对测量系统的准确性进行了单峰分布的验证,测量误差在5%之内;对于粒径为39.2μm和67.3μm的混合颗粒进行了双峰分布验证,在43.3μm和74.1μm处出现峰值,测量误差在10%左右。  相似文献   

8.
提出了一种利用手握式靶标实现双目视觉三维坐标测量的新方法。利用空间透视变换建立了非线性测量模型,介绍了基于Newton非线性迭代的测量方程的求解方法。以矩阵分析理论为基础,讨论了影响测量方程求解的因素,并提出了方法中重要部件手握式靶标上特征点分布的基本约束条件,为这一方法在实际应用中获得较高的测量准确度提供了较为完善的理论分析依据。通过数值分析与计算,验证了理论分析的正确性。  相似文献   

9.
场向电流随亚暴位相的变化   总被引:2,自引:2,他引:0  
利用ISEE1和2卫星测量的磁场数据,计算了电离层中的场向电流。依据每个场向电流事件所伴随的亚暴位相,分别计算了一区和二区场向电流强度、密度及电流片厚度在亚暴成长相、膨胀相和恢复相的平均值及中间值。其结果,从成长相到膨胀相,一区和二区场向电流的强度和密度增加,从膨胀相到恢复相,其值减小。平均说来,一区的电流强度约是二区的1.4倍。电流片厚度的变化在上述期间内与电流强度及密度的变化趋势相反。   相似文献   

10.
众所周知,阿仑方差是按无间隙双采样定义的。但实际测量时由于计数器的死区时间,使得无间隙采样十分困难。在很多场合只好用有间隙采样做阿仑方差,然后用巴勒斯偏函数加以修正,其繁杂程度是可想而知的。提出的测时定时方式巧妙地利用了微机定时技术及微机高速数据采集处理的特点,以最少的硬件实现了严格的无间隙阿仑方差测量,其性能价格比远优于一般的计数器方式,具有很大的实用价值。此外,这种方式还能用于一般的时间测量,它有可能发展成一种新的、高性能价格比的智能计数器。  相似文献   

11.
介绍了美军装备计量管理的主要特点,包括计量管理体系构成、计量实施机构的设置、法规标准体系、计量设备管理制度、计量人员训练,以及民间力量的运用。  相似文献   

12.
简述了航天科技集团公司计量体系建设的整体情况,分析思考体系建设的难点并提出了以航天型号计量保证为重点的计量体系架构,对航天企业的计量管理体系建设、型号产品的计量保障工作及今后的发展方向等进行了研究和探讨。  相似文献   

13.
控制力矩陀螺(CMG,control moment gyro)系统存在多种误差与扰动,影响航天器的姿态控制精度.分析了大型单框架控制力矩陀螺(SGCMG,single gimbal control moment gyro)各主要组成部分的特性、误差及扰动,包括转子动静不平衡、转子轴的安装误差、轴承摩擦、转子电机特性、框架电机特性和谐波减速器特性.通过建立大型SGCMG的动力学精细模型并进行数学仿真,得到了大型SGCMG主要误差与扰动对其输出力矩的影响:在框架伺服系统加装谐波齿轮减速机构可以明显提高SGCMG输出力矩精度,同时也给框架带来高频谐振;转子动不平衡造成的扰动力矩是导致SGCMG在其力矩输出轴和框架轴方向产生输出力矩偏差的主要原因.  相似文献   

14.
变速器齿轮振动机理及修形减振降噪方法   总被引:1,自引:0,他引:1  
以某款自动变速器为研究对象,对齿轮振动机理和斜齿轮修形减振降噪方法开展深入研究。采用Simulation X仿真和试验方法,确定对系统振动贡献量最大的齿轮对;采用有限元法进行内部激励详细分析,包含传递误差、接触斑点、啮合冲击和轮齿的热变形;在考虑齿轮温度场影响前提下,以传递误差波动小、消除啮合冲击和齿面接触状态良好为优选目标,经大量仿真结果对比,确定修形方案。修形后试验结果表明,齿轮修形方案可行,改善了齿轮传动状态,有效地减小了变速器的振动噪声。  相似文献   

15.
齿轮全谐波误差分离技术   总被引:1,自引:0,他引:1  
齿轮全谐波误差分离技术是一种新的亚微米级测量技术.在一台光栅式齿轮整体误差测量仪上,它用三点法误差分离技术能分离开仪器轴系测量链的系统误差(包括测量蜗杆误差、光栅传感器误差、轴承回转误差等)和被测齿轮的全谐波误差.因而能满足5级或更高级别的齿轮测量要求.在对上述误差进行谐波分析后,可找出仪器及被测齿轮的误差来源.这就提供了进一步提高仪器测量准确度的可能性,从而使新一代超精密齿轮整体误差测量仪的测量不确定度可以从微米级提高到纳米级的水平.  相似文献   

16.
本文首先简述了MLS模拟器及其计量性能要求,然后对研制的MLS模拟器自动计量系统进行了详细介绍,包括硬件分系统组成及其关键技术,软件分系统架构及其核心流程;最后将自动计量系统应用于多台MLS模拟器的校准/检定。应用表明,MLS模拟器自动计量系统能够解决MLS模拟器计量保障中存在的问题,确保MLS机载设备各项参数准确一致,进而保证了飞行安全。  相似文献   

17.
计量学是测量及其应用的科学。计量是实现单位统一、量值准确可靠的活动,计量技术水平体现了科技发展的先进程度,产品质量的提升离不开科学、精准的计量。本文通过搜集、整理单位制变革以及量子化技术、微纳尺度技术、空间计量技术、碳纳米材料技术、智能化计量技术等国内外大量文献资料,归纳并分析了国外先进计量技术发展动态与趋势,可为国防军工计量技术发展提供借鉴。  相似文献   

18.
空间计量是保障地外空间的测量单位统一、测量量值准确可靠的技术和管理活动。本文对空间计量概念进行了全面描述,介绍了国内外在空间计量技术领域的发展现状及取得的部分成果,并提出了空间计量领域的发展趋势。  相似文献   

19.
导弹武器系统计量保障   总被引:1,自引:0,他引:1  
为确保某型野战防空导弹武器系统将来服役过程中的战备完好性,具备随时准确执行预定任务的能力,发挥其应有的战斗效能,装备计量保障工作是一项必不可少的工作。结合该型号的特点充分考虑检测设备及其校准设备要求,详细分析了装备计量保障,并针对装备的寿命周期阶段提出了计量保障体系建设的初步设想。  相似文献   

20.
介绍计量技术规范的内涵和国防军工计量技术规范概况,按照计量检定规程、计量校准规范、计量器具等级图、计量通用基础规范四个类别,详细阐述国防军工计量技术规范体系构成,分析存在的问题并提出发展重点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号